ﻻ يوجد ملخص باللغة العربية
We present a field study of snow settling dynamics based on simultaneous measurements of the atmospheric flow field and snow particle trajectories. Specifically, a super-large-scale particle image velocimetry (SLPIV) system using natural snow particles as tracers is deployed to quantify the velocity field and identify vortex structures in a 22 m $times$ 39 m field of view centered 18 m above the ground. Simultaneously, we track individual snow particles in a 3 m $times$ 5 m sample area within the SLPIV using particle tracking velocimetry (PTV). The results reveal the direct linkage among vortex structures in atmospheric turbulence, the spatial distribution of snow particle concentration, and their settling dynamics. In particular, with snow turbulence interaction at near-critical Stokes number, the settling velocity enhancement of snow particles is multifold, and larger than what has been observed in previous field studies. SLPIV measurements show higher concentration of snow particles preferentially located on the downward side of the vortices identified in the atmospheric flow field. PTV, performed on high resolution images around the reconstructed vortices, confirms the latter trend and provides statistical evidence of the acceleration of snow particles, as they move toward the downward side of vortices. Overall, the simultaneous multi-scale particle imaging presented here enables us to directly quantify the salient features of preferential sweeping, supporting it as an underlying mechanism of snow settling enhancement in the atmospheric surface layer.
The effect of turbulence on snow precipitation is not incorporated into present weather forecasting models. Here we show evidence that turbulence is in fact a key influence on both fall speed and spatial distribution of settling snow. We consider thr
In a seminal article, citet[J. Fluid Mech., 174:441-465]{maxey87} presented a theoretical analysis showing that enhanced particle settling speeds in turbulence occur through the preferential sweeping mechanism, which depends on the preferential sampl
We explore the role of gravitational settling on inertial particle concentrations in a wall-bounded turbulent flow. While it may be thought that settling can be ignored when the settling parameter $Svequiv v_s/u_tau$ is small ($v_s$ - Stokes settling
We present a sweep-stick mechanism for heavy particles transported by a turbulent flow under the action of gravity. Direct numerical simulations show that these particles preferentially explore regions of the flow with close to zero Lagrangian accele
We present a numerical study of settling and clustering of small inertial particles in homogeneous and isotropic turbulence. Particles are denser than the fluid, but not in the limit of being much heavier than the displaced fluid. At fixed Reynolds a