ﻻ يوجد ملخص باللغة العربية
In a seminal article, citet[J. Fluid Mech., 174:441-465]{maxey87} presented a theoretical analysis showing that enhanced particle settling speeds in turbulence occur through the preferential sweeping mechanism, which depends on the preferential sampling of the fluid velocity gradient field by the inertial particles. However, recent Direct Numerical Simulation (DNS) results in citet[J. Fluid Mech., 796:659--711]{ireland16b} show that even in a portion of the parameter space where this preferential sampling is absent, the particles nevertheless exhibit enhanced settling velocities. Further, there are several outstanding questions concerning the role of different turbulent flow scales on the enhanced settling, and the role of the Taylor Reynolds number $R_lambda$. The analysis of Maxey does not explain these issues, partly since it was restricted to particle Stokes numbers $Stll1$. To address these issues, we have developed a new theoretical result, valid for arbitrary $St$, that reveals the multiscale nature of the mechanism generating the enhanced settling speeds. In particular, it shows how the range of scales at which the preferential sweeping mechanism operates depends on $St$. This analysis is complemented by results from DNS where we examine the role of different flow scales on the particle settling speeds by coarse-graining the underlying flow. The results show how the flow scales that contribute to the enhanced settling depend on $St$, and that contrary to previous claims, there can be no single turbulent velocity scale that characterizes the enhanced settling speed. The results explain the dependence of the particle settling speeds on $R_lambda$, and show how the saturation of this dependence at sufficiently large $R_lambda$ depends upon $St$. The results also show ...
We present a field study of snow settling dynamics based on simultaneous measurements of the atmospheric flow field and snow particle trajectories. Specifically, a super-large-scale particle image velocimetry (SLPIV) system using natural snow particl
The effect of turbulence on snow precipitation is not incorporated into present weather forecasting models. Here we show evidence that turbulence is in fact a key influence on both fall speed and spatial distribution of settling snow. We consider thr
We present a sweep-stick mechanism for heavy particles transported by a turbulent flow under the action of gravity. Direct numerical simulations show that these particles preferentially explore regions of the flow with close to zero Lagrangian accele
We present a numerical study of settling and clustering of small inertial particles in homogeneous and isotropic turbulence. Particles are denser than the fluid, but not in the limit of being much heavier than the displaced fluid. At fixed Reynolds a
The motion of thin curved falling particles is ubiquitous in both nature and industry but is not yet widely examined. Here, we describe an experimental study on the dynamics of thin cylindrical shells resembling broken bottle fragments settling throu