ﻻ يوجد ملخص باللغة العربية
As present and future experiments, on both the energy and precision frontiers, look to identify new physics beyond the Standard Model, we require more precise determinations of fundamental quantities, like the QED and electroweak couplings at various momenta. These can be obtained either entirely from experimental measurements, or from one such measurement at a particular virtuality combined with the couplings virtuality dependence computed within the SM. Thus, a precise, entirely theoretical determination of the running couplings is highly desirable, even more since the preliminary results of the E989 experiment in Fermilab were published. We give results for the hadronic contribution to the QED running coupling $alpha(Q^2)$ and weak mixing angle $sin^2theta_W(Q^2)$ in the space-like energy region $(0, 7]~text{GeV}^2$ with a total relative uncertainty of $2%$ at energies $Q^2 ll 1~text{GeV}^2$, and $1%$ at $Q^2 > 1~text{GeV}^2$.
The electromagnetic coupling $alpha$ and the electroweak mixing angle $theta_{mathrm{W}}$ are parameters of the Standard Model (SM) that enter precision SM tests and play a fundamental r^ole in beyond SM physics searches. Their values are energy depe
Mixing in the $Sigma^0$-$Lambda^0$ system is a direct consequence of broken isospin symmetry and is a measure of both isospin-symmetry breaking as well as general SU(3)-flavour symmetry breaking. In this work we present a new scheme for calculating t
A method to determine the running of alpha from a measurement of small-angle Bhabha scattering is proposed and worked out. The method is suited to high statistics experiments at e+e- colliders, which are equipped with luminometers in the appropriate
In order to reduce the current hadronic uncertainties in the theory prediction for the anomalous magnetic moment of the muon, lattice calculations need to reach sub-percent accuracy on the hadronic-vacuum-polarization contribution. This requires the
In order to reach (sub-)per cent level precision in lattice calculations of the hadronic vacuum polarisation, isospin breaking corrections must be included. This requires introducing QED on the lattice, and the associated finite-size effects are pote