ﻻ يوجد ملخص باللغة العربية
The electromagnetic coupling $alpha$ and the electroweak mixing angle $theta_{mathrm{W}}$ are parameters of the Standard Model (SM) that enter precision SM tests and play a fundamental r^ole in beyond SM physics searches. Their values are energy dependent, and non-perturbative hadronic contributions are the main source of uncertainty to the theoretical knowledge of the running with energy. We present a lattice study of the leading hadronic contribution to the running of $alpha$ and $sin^2theta_{mathrm{W}}$. The former is related to the hadronic vacuum polarization (HVP) function of electromagnetic currents, and the latter to the HVP mixing of the electromagnetic current with the vector part of the weak neutral currents. We use the time-momentum representation (TMR) method to compute the HVP on the lattice, estimating both connected and disconnected contributions on $N_{mathrm{f}}=2+1$ non-perturbatively $O(a)$-improved Wilson fermions ensembles from the Coordinated Lattice Simulations (CLS) initiative. The use of different lattice spacings and quark masses allows us to reliably extrapolate the results to the physical point.
As present and future experiments, on both the energy and precision frontiers, look to identify new physics beyond the Standard Model, we require more precise determinations of fundamental quantities, like the QED and electroweak couplings at various
Mixing in the $Sigma^0$-$Lambda^0$ system is a direct consequence of broken isospin symmetry and is a measure of both isospin-symmetry breaking as well as general SU(3)-flavour symmetry breaking. In this work we present a new scheme for calculating t
A method to determine the running of alpha from a measurement of small-angle Bhabha scattering is proposed and worked out. The method is suited to high statistics experiments at e+e- colliders, which are equipped with luminometers in the appropriate
We present a first-principles lattice QCD+QED calculation at physical pion mass of the leading-order hadronic vacuum polarization contribution to the muon anomalous magnetic moment. The total contribution of up, down, strange, and charm quarks includ
In order to reduce the current hadronic uncertainties in the theory prediction for the anomalous magnetic moment of the muon, lattice calculations need to reach sub-percent accuracy on the hadronic-vacuum-polarization contribution. This requires the