ترغب بنشر مسار تعليمي؟ اضغط هنا

Social Media Monitoring for IoT Cyber-Threats

82   0   0.0 ( 0 )
 نشر من قبل Paris Koloveas
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The rapid development of IoT applications and their use in various fields of everyday life has resulted in an escalated number of different possible cyber-threats, and has consequently raised the need of securing IoT devices. Collecting Cyber-Threat Intelligence (e.g., zero-day vulnerabilities or trending exploits) from various online sources and utilizing it to proactively secure IoT systems or prepare mitigation scenarios has proven to be a promising direction. In this work, we focus on social media monitoring and investigate real-time Cyber-Threat Intelligence detection from the Twitter stream. Initially, we compare and extensively evaluate six different machine-learning based classification alternatives trained with vulnerability descriptions and tested with real-world data from the Twitter stream to identify the best-fitting solution. Subsequently, based on our findings, we propose a novel social media monitoring system tailored to the IoT domain; the system allows users to identify recent/trending vulnerabilities and exploits on IoT devices. Finally, to aid research on the field and support the reproducibility of our results we publicly release all annotated datasets created during this process.



قيم البحث

اقرأ أيضاً

The clear, social, and dark web have lately been identified as rich sources of valuable cyber-security information that -given the appropriate tools and methods-may be identified, crawled and subsequently leveraged to actionable cyber-threat intellig ence. In this work, we focus on the information gathering task, and present a novel crawling architecture for transparently harvesting data from security websites in the clear web, security forums in the social web, and hacker forums/marketplaces in the dark web. The proposed architecture adopts a two-phase approach to data harvesting. Initially a machine learning-based crawler is used to direct the harvesting towards websites of interest, while in the second phase state-of-the-art statistical language modelling techniques are used to represent the harvested information in a latent low-dimensional feature space and rank it based on its potential relevance to the task at hand. The proposed architecture is realised using exclusively open-source tools, and a preliminary evaluation with crowdsourced results demonstrates its effectiveness.
Security and privacy of the users have become significant concerns due to the involvement of the Internet of things (IoT) devices in numerous applications. Cyber threats are growing at an explosive pace making the existing security and privacy measur es inadequate. Hence, everyone on the Internet is a product for hackers. Consequently, Machine Learning (ML) algorithms are used to produce accurate outputs from large complex databases, where the generated outputs can be used to predict and detect vulnerabilities in IoT-based systems. Furthermore, Blockchain (BC) techniques are becoming popular in modern IoT applications to solve security and privacy issues. Several studies have been conducted on either ML algorithms or BC techniques. However, these studies target either security or privacy issues using ML algorithms or BC techniques, thus posing a need for a combined survey on efforts made in recent years addressing both security and privacy issues using ML algorithms and BC techniques. In this paper, we provide a summary of research efforts made in the past few years, starting from 2008 to 2019, addressing security and privacy issues using ML algorithms and BCtechniques in the IoT domain. First, we discuss and categorize various security and privacy threats reported in the past twelve years in the IoT domain. Then, we classify the literature on security and privacy efforts based on ML algorithms and BC techniques in the IoT domain. Finally, we identify and illuminate several challenges and future research directions in using ML algorithms and BC techniques to address security and privacy issues in the IoT domain.
The various types of communication technologies and mobility features in Internet of Things (IoT) on the one hand enable fruitful and attractive applications, but on the other hand facilitates malware propagation, thereby raising new challenges on ha ndling IoT-empowered malware for cyber security. Comparing with the malware propagation control scheme in traditional wireless networks where nodes can be directly repaired and secured, in IoT, compromised end devices are difficult to be patched. Alternatively, blocking malware via patching intermediate nodes turns out to be a more feasible and practical solution. Specifically, patching intermediate nodes can effectively prevent the proliferation of malware propagation by securing infrastructure links and limiting malware propagation to local device-to-device dissemination. This article proposes a novel traffic-aware patching scheme to select important intermediate nodes to patch, which applies to the IoT system with limited patching resources and response time constraint. Experiments on real-world trace datasets in IoT networks are conducted to demonstrate the advantage of the proposed traffic-aware patching scheme in alleviating malware propagation.
As Critical National Infrastructures are becoming more vulnerable to cyber attacks, their protection becomes a significant issue for any organization as well as a nation. Moreover, the ability to attribute is a vital element of avoiding impunity in c yberspace. In this article, we present main threats to critical infrastructures along with protective measures that one nation can take, and which are classified according to legal, technical, organizational, capacity building, and cooperation aspects. Finally we provide an overview of current methods and practices regarding cyber attribution and cyber peace keeping
136 - Peng Gao , Fei Shao , Xiaoyuan Liu 2021
Log-based cyber threat hunting has emerged as an important solution to counter sophisticated cyber attacks. However, existing approaches require non-trivial efforts of manual query construction and have overlooked the rich external knowledge about th reat behaviors provided by open-source Cyber Threat Intelligence (OSCTI). To bridge the gap, we build ThreatRaptor, a system that facilitates cyber threat hunting in computer systems using OSCTI. Built upon mature system auditing frameworks, ThreatRaptor provides (1) an unsupervised, light-weight, and accurate NLP pipeline that extracts structured threat behaviors from unstructured OSCTI text, (2) a concise and expressive domain-specific query language, TBQL, to hunt for malicious system activities, (3) a query synthesis mechanism that automatically synthesizes a TBQL query from the extracted threat behaviors, and (4) an efficient query execution engine to search the big system audit logging data.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا