ترغب بنشر مسار تعليمي؟ اضغط هنا

Efficient broadband THz generation in BNA organic crystal at Ytterbium laser wavelength

69   0   0.0 ( 0 )
 نشر من قبل Hovan Lee
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work, we demonstrate BNAs high potential for efficient generation of high power THz using ytterbium laser wavelengths. We study the generation theoretically and experimentally using laser wavelength of 960-1150 nm. Broadband pulses of 0-7 THz and high efficiency of 0.6% are demonstrated.

قيم البحث

اقرأ أيضاً

We characterize the terahertz (THz) generation of N-benzyl-2-methyl-4-nitroaniline (BNA), with crystals ranging in thickness from 123-700 {mu}m. We compare excitation using 800-nm and 1250 to 1500-nm wavelengths. Pumping BNA with 800-nm wavelengths a nd longer near-infrared wavelengths results in a broad spectrum, producing out to 6 THz using a 100-fs pump, provided the BNA crystal is thin enough. ~200 {mu}m or thinner crystals are required to produce a broad spectrum with an 800-nm pump, whereas ~300 {mu}m thick crystals are optimal for broadband THz generation using the longer wavelengths. We report the favorable THz generation and optical characteristics of our BNA crystals that make them attractive for broadband, high-field THz generation, and we also find significant differences to BNA results reported in other works.
The organic terahertz (THz) generation crystal BNA has recently gained traction as a valuable source to produce broadband THz pulses. Even when pumped with 800-nm light, thin BNA crystals can produce relatively high electric fields with frequency com ponents out to 5 THz. However, the THz output when pumped with 800-nm light is limited by the damage threshold of the organic crystal. Here we report that the damage threshold of BNA can be significantly improved by physically bonding BNA to a high-thermal conductivity sapphire window. When pumped with 800-nm light from an amplified Ti:sapphire laser system, our bonded BNA (BNA-sapphire) generates 2.5 times higher electric field strengths compared to bare BNA crystals. We characterize the average damage threshold for bare BNA and BNA-sapphire, measure peak-to-peak electric field strengths and THz waveforms, and determine the nonlinear transmission in BNA. Pumping BNA-sapphire with 800-nm light results in peak-to-peak electric fields exceeding 1 MV/cm, with strong broadband frequency components from 0.5-5 THz. Our BNA-sapphire THz source is a promising alternative to tilted pulse front LiNbO3 THz sources, which will enable many research groups without optical parametric amplifiers to perform high-field, broadband THz spectroscopy.
We integrate about 100 single Cadmium Selenide semiconductor nanowires in self-standing Silicon Nitride photonic crystal cavities in a single processing run. Room temperature measurements reveal a single narrow emission linewidth, corresponding to a Q-factor as large as 5000. By varying the structural parameters of the photonic crystal, the peak wavelength is tuned, thereby covering the entire emission spectral range of the active material. A very large spectral range could be covered by heterogeneous integration of different active materials.
Over the past years, ultrafast lasers with average powers in the 100 W range have become a mature technology, with a multitude of applications in science and technology. Nonlinear temporal compression of these lasers to few- or even single-cycle dura tion is often essential, yet still hard to achieve, in particular at high repetition rates. Here we report a two-stage system for compressing pulses from a 1030 nm ytterbium fiber laser to single-cycle durations with 5 ${mu}$J output pulse energy at 9.6 MHz repetition rate. In the first stage, the laser pulses are compressed from 340 to 25 fs by spectral broadening in a krypton-filled single-ring photonic crystal fiber (SR-PCF), subsequent phase compensation being achieved with chirped mirrors. In the second stage, the pulses are further compressed to single-cycle duration by soliton-effect self-compression in a neon-filled SR-PCF. We estimate a pulse duration of ~3.4 fs at the fiber output by numerically back-propagating the measured pulses. Finally, we directly measured a pulse duration of 3.8 fs (1.25 optical cycles) after compensating (using chirped mirrors) the dispersion introduced by the optical elements after the fiber, more than 50% of the total pulse energy being in the main peak. The system can produce compressed pulses with peak powers >0.6 GW and a total transmission exceeding 70%.
We present an ultrafast graphene-based detector, working in the THz range at room temperature. A logarithmic-periodic antenna is coupled to a graphene flake that is produced by exfoliation on SiO2. The detector was characterized with the free-electro n laser FELBE for wavelengths from 8 um to 220 um. The detector rise time is 50 ps in the wavelength range from 30 um to 220 um. Autocorrelation measurements exploiting the nonlinear photocurrent response at high intensities reveal an intrinsic response time below 10 ps. This detector has a high potential for characterizing temporal overlaps, e. g. in two-color pump-probe experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا