ﻻ يوجد ملخص باللغة العربية
Like many scientific fields, new chemistry literature has grown at a staggering pace, with thousands of papers released every month. A large portion of chemistry literature focuses on new molecules and reactions between molecules. Most vital information is conveyed through 2-D images of molecules, representing the underlying molecules or reactions described. In order to ensure reproducible and machine-readable molecule representations, text-based molecule descriptors like SMILES and SELFIES were created. These text-based molecule representations provide molecule generation but are unfortunately rarely present in published literature. In the absence of molecule descriptors, the generation of molecule descriptors from the 2-D images present in the literature is necessary to understand chemistry literature at scale. Successful methods such as Optical Structure Recognition Application (OSRA), and ChemSchematicResolver are able to extract the locations of molecules structures in chemistry papers and infer molecular descriptions and reactions. While effective, existing systems expect chemists to correct outputs, making them unsuitable for unsupervised large-scale data mining. Leveraging the task formulation of image captioning introduced by DECIMER, we introduce IMG2SMI, a model which leverages Deep Residual Networks for image feature extraction and an encoder-decoder Transformer layers for molecule description generation. Unlike previous Neural Network-based systems, IMG2SMI builds around the task of molecule description generation, which enables IMG2SMI to outperform OSRA-based systems by 163% in molecule similarity prediction as measured by the molecular MACCS Fingerprint Tanimoto Similarity. Additionally, to facilitate further research on this task, we release a new molecule prediction dataset. including 81 million molecules for molecule description generation
Cryo-electron microscopy (cryo-EM) is a powerful technique for determining the structure of proteins and other macromolecular complexes at near-atomic resolution. In single particle cryo-EM, the central problem is to reconstruct the three-dimensional
Quantification of myocardial perfusion has the potential to improve detection of regional and global flow reduction. Significant effort has been made to automate the workflow, where one essential step is the arterial input function (AIF) extraction.
Reconstructing a map of neuronal connectivity is a critical challenge in contemporary neuroscience. Recent advances in high-throughput serial section electron microscopy (EM) have produced massive 3D image volumes of nanoscale brain tissue for the fi
COVID-19 clinical presentation and prognosis are highly variable, ranging from asymptomatic and paucisymptomatic cases to acute respiratory distress syndrome and multi-organ involvement. We developed a hybrid machine learning/deep learning model to c
Infection by many viruses begins with fusion of viral and cellular lipid membranes, followed by entry of viral contents into the target cell and ultimately, after many biochemical steps, integration of viral DNA into that of the host cell. The early