ترغب بنشر مسار تعليمي؟ اضغط هنا

Single-crystal graphene on Ir(110)

87   0   0.0 ( 0 )
 نشر من قبل Stefan Kraus
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A single-crystal sheet of graphene is synthesized on the low-symmetry substrate Ir(110) by thermal decomposition of C$_2$H$_4$ at 1500 K. Using scanning tunneling microscopy, low-energy electron diffraction, angle-resolved photoemission spectroscopy, and ab initio density functional theory the structure and electronic properties of the adsorbed graphene sheet and its moire with the substrate are uncovered. The adsorbed graphene layer forms a wave pattern of nm wave length with a corresponding modulation of its electronic properties. This wave pattern is demonstrated to enable the templated adsorption of aromatic molecules and the uniaxial growth of organometallic wires. Not limited to this, graphene on Ir(110) is also a versatile substrate for 2D-layer growth and makes it possible to grow epitaxial layers on ureconstructed Ir(110).



قيم البحث

اقرأ أيضاً

Single-crystalline transition metal films are ideal playing fields for the epitaxial growth of graphene and graphene-base materials. Graphene-silicon layered structures were successfully constructed on Ir(111) thin film on Si substrate with an yttria -stabilized zirconia buffer layer via intercalation approach. Such hetero-layered structures are compatible with current Si-based microelectronic technique, showing high promise for applications in future micro- and nano-electronic devices.
A foundation of the modern technology that uses single-crystal silicon has been the growth of high-quality single-crystal Si ingots with diameters up to 12 inches or larger. For many applications of graphene, large-area high-quality (ideally of singl e-crystal) material will be enabling. Since the first growth on copper foil a decade ago, inch-sized single-crystal graphene has been achieved. We present here the growth, in 20 minutes, of a graphene film of 5 x 50 cm2 dimension with > 99% ultra-highly oriented grains. This growth was achieved by: (i) synthesis of sub-metre-sized single-crystal Cu(111) foil as substrate; (ii) epitaxial growth of graphene islands on the Cu(111) surface; (iii) seamless merging of such graphene islands into a graphene film with high single crystallinity and (iv) the ultrafast growth of graphene film. These achievements were realized by a temperature-driven annealing technique to produce single-crystal Cu(111) from industrial polycrystalline Cu foil and the marvellous effects of a continuous oxygen supply from an adjacent oxide. The as-synthesized graphene film, with very few misoriented grains (if any), has a mobility up to ~ 23,000 cm2V-1s-1 at 4 K and room temperature sheet resistance of ~ 230 ohm/square. It is very likely that this approach can be scaled up to achieve exceptionally large and high-quality graphene films with single crystallinity, and thus realize various industrial-level applications at a low cost.
Using X-ray photoelectron spectroscopy, thermal desorption spectroscopy, and scanning tunneling microscopy we show that upon keV Xe + irradiation of graphene on Ir(111), Xe atoms are trapped under the graphene. Upon annealing, aggregation of Xe leads to graphene bulges and blisters. The efficient trapping is an unexpected and remarkable phenomenon, given the absence of chemical binding of Xe to Ir and to graphene, the weak interaction of a perfect graphene layer with Ir(111), as well as the substantial damage to graphene due to irradiation. By combining molecular dynamics simulations and density functional theory calculations with our experiments, we uncover the mechanism of trapping. We describe ways to avoid blister formation during graphene growth, and also demonstrate how ion implantation can be used to intentionally create blisters without introducing damage to the graphene layer. Our approach may provide a pathway to synthesize new materials at a substrate - 2D material interface or to enable confined reactions at high pressures and temperatures.
76 - Kai Liu 2020
Bilayer graphene has been a subject of intense study in recent years. We extend a structural phase field crystal method to include an external potential from adjacent layer(s), which is generated by the corresponding phase field and changes over time . Moreover, multiple layers can be added into the structure. Using the thickness of the boundaries between different stacking variants of the bilayer structure as the key parameter, we quantify the strength of the adjacent layer potential by comparing with atomistic simulation results. We then test the multiple graphene structures, including bilayers, triple layers, up to 6 layers. We find that besides the initial conditions, the way of new layers added into the structure will also affect the layout of the atomic configuration. We believe tour results can help understanding the mechanism of graphene structure consists of more than one layer.
We demonstrate single crystal growth of wafer-scale hexagonal boron nitride (hBN), an insulating atomic thin monolayer, on high-symmetry index surface plane Cu(111). The unidirectional epitaxial growth is guaranteed by large binding energy difference , ~0.23 eV, between A- and B-steps edges on Cu(111) docking with B6N7 clusters, confirmed by density functional theory calculations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا