ﻻ يوجد ملخص باللغة العربية
Bilayer graphene has been a subject of intense study in recent years. We extend a structural phase field crystal method to include an external potential from adjacent layer(s), which is generated by the corresponding phase field and changes over time. Moreover, multiple layers can be added into the structure. Using the thickness of the boundaries between different stacking variants of the bilayer structure as the key parameter, we quantify the strength of the adjacent layer potential by comparing with atomistic simulation results. We then test the multiple graphene structures, including bilayers, triple layers, up to 6 layers. We find that besides the initial conditions, the way of new layers added into the structure will also affect the layout of the atomic configuration. We believe tour results can help understanding the mechanism of graphene structure consists of more than one layer.
Reliable and robust methods of predicting the crystal structure of a compound, based only on its chemical composition, is crucial to the study of materials and their applications. Despite considerable ongoing research efforts, crystal structure predi
We use a tight-binding model and the random-phase approximation to study the Coulomb excitations in simple-hexagonal-stacking multilayer graphene and discuss the field effects. The calculation results include the energy bands, the response functions,
The emergence of two-dimensional (2D) materials has attracted a great deal of attention due to their fascinating physical properties and potential applications for future nanoelectronic devices. Since the first isolation of graphene, a Dirac material
A single-crystal sheet of graphene is synthesized on the low-symmetry substrate Ir(110) by thermal decomposition of C$_2$H$_4$ at 1500 K. Using scanning tunneling microscopy, low-energy electron diffraction, angle-resolved photoemission spectroscopy,
Weyl semimetals are crystalline solids that host emergent relativistic Weyl fermions and have characteristic surface Fermi-arcs in their electronic structure. Weyl semimetals with broken time reversal symmetry are difficult to identify unambiguously.