ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Transferability of Pre-trained Language Models: A Study from Artificial Datasets

70   0   0.0 ( 0 )
 نشر من قبل Cheng-Han Chiang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Pre-training language models (LMs) on large-scale unlabeled text data makes the model much easier to achieve exceptional downstream performance than their counterparts directly trained on the downstream tasks. In this work, we study what specific traits in the pre-training data, other than the semantics, make a pre-trained LM superior to their counterparts trained from scratch on downstream tasks. We propose to use artificially constructed datasets as the pre-training data to exclude the effect of semantics, and further control what characteristics the pre-training corpora have. By fine-tuning the pre-trained models on GLUE benchmark, we can learn how beneficial it is to transfer the knowledge from the model trained on the dataset possessing that specific trait. We define and discuss three different characteristics in the artificial dataset: 1) matching the tokens uni-gram or bi-gram distribution between pre-training and downstream fine-tuning, 2) the presence of the explicit dependencies among the tokens in a sequence, 3) the length of the implicit dependencies among the tokens in a sequence. Our experiments show that the explicit dependencies in the sequences of the pre-training data are critical to the downstream performance. Our results also reveal that models achieve better downstream performance when pre-trained on a dataset with a longer range of implicit dependencies. Based on our analysis, we find that models pre-trained with artificial datasets are prone to learn spurious correlation in downstream tasks. Our work reveals that even if the LMs are not pre-trained on natural language, they still gain transferability on certain human language downstream tasks once the LMs learn to model the token dependencies in the sequences. This result helps us understand the exceptional transferability of pre-trained LMs.



قيم البحث

اقرأ أيضاً

276 - Bohan Li , Hao Zhou , Junxian He 2020
Pre-trained contextual representations like BERT have achieved great success in natural language processing. However, the sentence embeddings from the pre-trained language models without fine-tuning have been found to poorly capture semantic meaning of sentences. In this paper, we argue that the semantic information in the BERT embeddings is not fully exploited. We first reveal the theoretical connection between the masked language model pre-training objective and the semantic similarity task theoretically, and then analyze the BERT sentence embeddings empirically. We find that BERT always induces a non-smooth anisotropic semantic space of sentences, which harms its performance of semantic similarity. To address this issue, we propose to transform the anisotropic sentence embedding distribution to a smooth and isotropic Gaussian distribution through normalizing flows that are learned with an unsupervised objective. Experimental results show that our proposed BERT-flow method obtains significant performance gains over the state-of-the-art sentence embeddings on a variety of semantic textual similarity tasks. The code is available at https://github.com/bohanli/BERT-flow.
Many efforts have been devoted to extracting constituency trees from pre-trained language models, often proceeding in two stages: feature definition and parsing. However, this kind of methods may suffer from the branching bias issue, which will infla te the performances on languages with the same branch it biases to. In this work, we propose quantitatively measuring the branching bias by comparing the performance gap on a language and its reversed language, which is agnostic to both language models and extracting methods. Furthermore, we analyze the impacts of three factors on the branching bias, namely parsing algorithms, feature definitions, and language models. Experiments show that several existing works exhibit branching biases, and some implementations of these three factors can introduce the branching bias.
153 - Xueqing Liu , Chi Wang 2021
The performance of fine-tuning pre-trained language models largely depends on the hyperparameter configuration. In this paper, we investigate the performance of modern hyperparameter optimization methods (HPO) on fine-tuning pre-trained language mode ls. First, we study and report three HPO algorithms performances on fine-tuning two state-of-the-art language models on the GLUE dataset. We find that using the same time budget, HPO often fails to outperform grid search due to two reasons: insufficient time budget and overfitting. We propose two general strategies and an experimental procedure to systematically troubleshoot HPOs failure cases. By applying the procedure, we observe that HPO can succeed with more appropriate settings in the search space and time budget; however, in certain cases overfitting remains. Finally, we make suggestions for future work. Our implementation can be found in https://github.com/microsoft/FLAML/tree/main/flaml/nlp/.
Contextualized representations trained over large raw text data have given remarkable improvements for NLP tasks including question answering and reading comprehension. There have been works showing that syntactic, semantic and word sense knowledge a re contained in such representations, which explains why they benefit such tasks. However, relatively little work has been done investigating commonsense knowledge contained in contextualized representations, which is crucial for human question answering and reading comprehension. We study the commonsense ability of GPT, BERT, XLNet, and RoBERTa by testing them on seven challenging benchmarks, finding that language modeling and its variants are effective objectives for promoting models commonsense ability while bi-directional context and larger training set are bonuses. We additionally find that current models do poorly on tasks require more necessary inference steps. Finally, we test the robustness of models by making dual test cases, which are correlated so that the correct prediction of one sample should lead to correct prediction of the other. Interestingly, the models show confusion on these test cases, which suggests that they learn commonsense at the surface rather than the deep level. We release a test set, named CATs publicly, for future research.
114 - Yujia Qin , Yankai Lin , Jing Yi 2021
Recent explorations of large-scale pre-trained language models (PLMs) such as GPT-3 have revealed the power of PLMs with huge amounts of parameters, setting off a wave of training ever-larger PLMs. However, training a large-scale PLM requires tremend ous amounts of computational resources, which is time-consuming and expensive. In addition, existing large-scale PLMs are mainly trained from scratch individually, ignoring the availability of many existing well-trained PLMs. To this end, we explore the question that how can previously trained PLMs benefit training larger PLMs in future. Specifically, we introduce a novel pre-training framework named knowledge inheritance (KI), which combines both self-learning and teacher-guided learning to efficiently train larger PLMs. Sufficient experimental results demonstrate the feasibility of our KI framework. We also conduct empirical analyses to explore the effects of teacher PLMs pre-training settings, including model architecture, pre-training data, etc. Finally, we show that KI can well support lifelong learning and knowledge transfer.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا