ترغب بنشر مسار تعليمي؟ اضغط هنا

Ray-Tracing in Relativistic Jet Simulations: A Polarimetric Study of Magnetic Field Morphology and Electron Scaling Relations

40   0   0.0 ( 0 )
 نشر من قبل Joana Kramer
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The jets emanating from the centers of active galactic nuclei (AGN) are among the most energetic objects in the universe. Investigating how the morphology of the jets synchrotron emission depends on the magnetic nature of the jets relativistic plasma is fundamental to the comparison between numerical simulations and the observed polarization of relativistic jets. Through the use of 3D relativistic magnetohydrodynamic (RMHD) jet simulations (computed using the PLUTO code) we study how the jets synchrotron emission depends upon the morphology of the jets magnetic field structure. Through the application of polarized radiative transfer and ray-tracing (via the RADMC-3D code) we create synthetic radio maps of the jets total intensity as well as the linearly and circularly polarized intensity for each jet simulation. In particular, we create synthetic ray-traced images of the jets polarized synchrotron emission when the jet carries a predominantly poloidal, helical, and toroidal magnetic field. We also explore several scaling relations in which the underlying electron power-law distribution is set proportional to: (i) the jets thermal plasma density, (ii) the jets internal energy density, and (iii) the jets magnetic energy density. We find that: (i) the jet emission is edge brightened when the magnetic field is toroidal in nature and spine brightened when the magnetic field is poloidal in nature, (ii) the circularly polarized emission exhibits both negative and positive signs for the toroidal magnetic field morphology at an inclination of 45{deg} as well as 5{deg}, and (iii) the relativistic jets emission is largely independent of different emission scaling relations when the ambient medium is excluded.

قيم البحث

اقرأ أيضاً

We study pion production by proton synchrotron radiation in the presence of a strong magnetic field when the Landau numbers of the initial and final protons are $n_{i,f} sim 10^4 - 10^5$. We find in our relativistic field theory calculations that the pion decay width depends only on the field strength parameter which previously was only conjectured based upon semi-classical arguments. Moreover, we also find new results that the decay width satisfies a robust scaling relation, and that the polar angular distribution of emitted pion momenta is very narrow and can be easily obtained. This scaling implies that one can infer the decay width in more realistic magnetic fields of $10^{15}$G, where $n_{i,f} sim 10^{12} - 10^{13}$, from the results for $n_{i,f} sim 10^4 - 10^5$. The resultant pion intensity and angular distributions for realistic magnetic field strengths are presented and their physical implications discussed.
The origin and evolution of supernova remnants of the mixed-morphology class is not well understood. Several remnants present distorted radio or X-ray shells with jet-like structures. G290.1-0.8 (MSH 11-61A) belongs to this class. We aim to investiga te the nature of this supernova remnant in order to unveil the origin of its particular morphology. We based our work on the study of the X-ray emitting plasma properties and the conditions imposed by the cold interstellar medium where the remnant expanded. We use archival radio, HI line data and X-ray observations from XMM-Newton and Chandra observatories, to study G290.1-0.8 and its surrounding medium. Spatially resolved spectral analysis and mean photon energy maps are used to obtain physical and geometrical parameters of the source. Radio continuum and HI line maps give crucial information to understand the radio/X-ray morphology. The X-ray images show that the remnant presents two opposite symmetric bright spots on a symmetry axis running towards the NW-SE direction. Spectral analysis and mean photon energy maps confirm that the physical conditions of the emitting plasma are not homogeneous throughout the remnant. In fact, both bright spots have higher temperatures than the rest of the plasma and its constituents have not reached ionization equilibrium yet. HI line data reveal low density tube-like structures aligned along the same direction. This evidence supports the idea that the particular X-ray morphology observed is a direct consequence of the structure of the interstellar medium where the remnant evolved. However, the possibility that an undetected point-like object, as a neutron star, exists within the remnant and contributes to the X-ray emission cannot be discarded. Finally, we suggest that a supernova explosion due to the collapse of a high-mass star with a strong bipolar wind can explain the supernova remnant morphology.
MeerKAT radio continuum and XMM-Newton X-ray images have recently revealed a spectacular bipolar channel at the Galactic Center that spans several degrees ($sim$0.5 kpc). An intermittent jet likely formed this channel and is consistent with earlier e vidence of a sustained, Seyfert-level outburst fueled by black-hole accretion onto SgA* several Myr ago. Therefore, to trace an intermittent jet that perhaps penetrated, deflected, and percolated along multiple paths through the interstellar medium, relevant interactions are identified and quantified in archival X-ray images, Hubble Space Telescope Paschen-$alpha$ images and ALMA mm-wave spectra, and new SOAR telescope IR spectra. Hydrodynamical simulations are used to show how a currently weak jet can explain these structures and inflate the ROSAT/eROSITA X-ray and Fermi $gamma$-ray bubbles that extend $pm$60 deg from the Galactic plane. Thus, our Galactic outflow has features in common with energetic, jet-driven structures in the prototypical Seyfert galaxy NGC 1068.
Current observations have shown that astrophysical jets reveal strong signs of radial structure. They suggest that the inner region of the jet, the jet spine, consists of a low-density, fast-moving gas, while the outer region of the jet consists of a more dense and slower moving gas, called the jet sheath. Moreover, if jets carry angular momentum, the resultant centrifugal forces lead to a radial stratification. Current observations are not able to fully resolve the radial structure, so little is known about its actual profile. We present three AGN jet models in $2.5D$ of which two have been given a radial structure. The first model is a homogeneous jet, the only model that doesnt carry angular momentum; the second model is a spine-sheath jet with an isothermal equation of state; and the third jet model is a (piecewise) isochoric spine-sheath jet, with constant but different densities for jet spine and jet sheath. In this paper, we look at the effects of radial stratification on jet integrity, mixing between the different jet components and global morphology of the jet-head and surrounding cocoon.
We discuss stationary and axisymmetric trans-magnetosonic outflows in the magnetosphere of a rotating black hole (BH). Ejected plasma from the plasma source located near the BH is accelerated far away to form a relativistic jet. In this study, the pl asma acceleration efficiency and conversion of fluid energy from electromagnetic energy are considered by employing the trans-fast magnetosonic flow solution derived by Takahashi & Tomimatsu (2008). Considering the parameter dependence of magnetohydrodynamical flows, we search for the parameters of the trans-magnetosonic outflow solution to the recent M87 jet observations and obtain the angular velocity values of the magnetic field line and angular momentum of the outflow in the magnetized jet flow. Therefore, we estimate the locations of the outer light surface, Alfven surface, and separation surface of the flow. We also discuss the electromagnetic energy flux from the rotating BH (i.e., the Blandford-Znajek process), which suggests that the energy extraction mechanism is effective for the M87 relativistic jet.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا