ﻻ يوجد ملخص باللغة العربية
We study pion production by proton synchrotron radiation in the presence of a strong magnetic field when the Landau numbers of the initial and final protons are $n_{i,f} sim 10^4 - 10^5$. We find in our relativistic field theory calculations that the pion decay width depends only on the field strength parameter which previously was only conjectured based upon semi-classical arguments. Moreover, we also find new results that the decay width satisfies a robust scaling relation, and that the polar angular distribution of emitted pion momenta is very narrow and can be easily obtained. This scaling implies that one can infer the decay width in more realistic magnetic fields of $10^{15}$G, where $n_{i,f} sim 10^{12} - 10^{13}$, from the results for $n_{i,f} sim 10^4 - 10^5$. The resultant pion intensity and angular distributions for realistic magnetic field strengths are presented and their physical implications discussed.
We study pion production from proton synchrotron radiation in the presence of strong magnetic fields. We derive the exact proton propagator from the Dirac equation in a strong magnetic field by explicitly including the anomalous magnetic moment. In t
We utilize an exact quantum calculation to explore axion emission from electrons and protons in the presence of the strong magnetic field of magnetars. The axion is emitted via transitions between the Landau levels generated by the strong magnetic fi
Many relativistic plasma environments in high-energy astrophysics, including pulsar wind nebulae, hot accretion flows onto black holes, relativistic jets in active galactic nuclei and gamma-ray bursts, and giant radio lobes, are naturally turbulent.
Using our new 3-D relativistic electromagnetic particle (REMP) code parallelized with MPI, we have investigated long-term particle acceleration associated with an relativistic electron-positron jet propagating in an unmagnetized ambient electron-posi
We study the surface tension of hot, highly magnetized three flavor quark matter droplets, focusing specifically on the thermodynamic conditions prevailing in neutron stars, hot lepton rich protoneutron stars and neutron star mergers. We explore the