ﻻ يوجد ملخص باللغة العربية
We present a methodology based on filtered data and moving averages for estimating robustly effective dynamics from observations of multiscale systems. We show in a semi-parametric framework of the Langevin type that the method we propose is asymptotically unbiased with respect to homogenization theory. Moreover, we demonstrate with a series of numerical experiments that the method we propose here outperforms traditional techniques for extracting coarse-grained dynamics from data, such as subsampling, in terms of bias and of robustness.
We study the problem of drift estimation for two-scale continuous time series. We set ourselves in the framework of overdamped Langevin equations, for which a single-scale surrogate homogenized equation exists. In this setting, estimating the drift c
We propose a novel method for drift estimation of multiscale diffusion processes when a sequence of discrete observations is given. For the Langevin dynamics in a two-scale potential, our approach relies on the eigenvalues and the eigenfunctions of t
We consider the inference problem for parameters in stochastic differential equation models from discrete time observations (e.g. experimental or simulation data). Specifically, we study the case where one does not have access to observations of the
We present a multiscale continuous Galerkin (MSCG) method for the fast and accurate stochastic simulation and optimization of time-harmonic wave propagation through photonic crystals. The MSCG method exploits repeated patterns in the geometry to dras
There is an intimate connection between numerical upscaling of multiscale PDEs and scattered data approximation of heterogeneous functions: the coarse variables selected for deriving an upscaled equation (in the former) correspond to the sampled info