ﻻ يوجد ملخص باللغة العربية
We present a multiscale continuous Galerkin (MSCG) method for the fast and accurate stochastic simulation and optimization of time-harmonic wave propagation through photonic crystals. The MSCG method exploits repeated patterns in the geometry to drastically decrease computational cost and incorporates the following ingredients: (1) a reference domain formulation that allows us to treat geometric variability resulting from manufacturing uncertainties; (2) a reduced basis approximation to solve the parametrized local subproblems; (3) a gradient computation of the objective function; and (4) a model and variance reduction technique that enables the accelerated computation of statistical outputs by exploiting the statistical correlation between the MSCG solution and the reduced basis approximation. The proposed method is thus well suited for both deterministic and stochastic simulations, as well as robust design of photonic crystals. We provide convergence and cost analysis of the MSCG method, as well as a simulation results for a waveguide T-splitter and a Z-bend to illustrate its advantages for stochastic simulation and robust design.
Numerical simulation of flow problems and wave propagation in heterogeneous media has important applications in many engineering areas. However, numerical solutions on the fine grid are often prohibitively expensive, and multiscale model reduction te
We present a wavelet-based adaptive method for computing 3D multiscale flows in complex, time-dependent geometries, implemented on massively parallel computers. While our focus is on simulations of flapping insects, it can be used for other flow prob
We introduce a new stabilization for discontinuous Galerkin methods for the Poisson problem on polygonal meshes, which induces optimal convergence rates in the polynomial approximation degree $p$. In the setting of [S. Bertoluzza and D. Prada, A poly
Linear poroelasticity models have a number of important applications in biology and geophysics. In particular, Biots consolidation model is a well-known model that describes the coupled interaction between the linear response of a porous elastic medi
In this work, we propose a local multiscale model reduction approach for the time-domain scalar wave equation in a heterogenous media. A fine mesh is used to capture the heterogeneities of the coefficient field, and the equation is solved globally on