ﻻ يوجد ملخص باللغة العربية
We demonstrate that certain class of infinite sums can be calculated analytically starting from a specific quantum mechanical problem and using principles of quantum mechanics. For simplicity we illustrate the method by exploring the problem of a particle in a box. Twofold calculation of the mean value of energy for the polynomial wave function inside the well yields even argument $p$ ($p>2$) of Riemann zeta and related functions. This method can be applied to a wide class of exactly solvable quantum mechanical problems which may lead to different infinite sums. Besides, the analysis performed here provides deeper understanding of superposition principle and presents useful exercise for physics students.
This book is an attempt to help students transform all of the concepts of quantum mechanics into concrete computer representations, which can be constructed, evaluated, analyzed, and hopefully understood at a deeper level than what is possible with m
We consider the hypothesis that quantum mechanics is not fundamental, but instead emerges from a theory with less computational power, such as classical mechanics. This hypothesis makes the prediction that quantum computers will not be capable of suf
Unconditionally secure quantum bit commitment (QBC) was widely believed to be impossible for more than two decades. But recently, basing on an anomalous behavior found in quantum steering, we proposed a QBC protocol which can be unconditionally secur
In this paper we use the framework of generalized probabilistic theories to present two sets of basic assumptions, called axioms, for which we show that they lead to the Hilbert space formulation of quantum mechanics. The key results in this derivati
In 1956 Dyson analyzed the low-energy excitations of a ferromagnet using a Hamiltonian that was non-Hermitian with respect to the standard inner product. This allowed for a facile rendering of these excitations (known as spin waves) as weakly interac