ترغب بنشر مسار تعليمي؟ اضغط هنا

Statistics of Dark Matter Substructure: III. Halo-to-Halo Variance

91   0   0.0 ( 0 )
 نشر من قبل Fangzhou Jiang
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Fangzhou Jiang




اسأل ChatGPT حول البحث

We present a study of unprecedented statistical power regarding the halo-to-halo variance of dark matter substructure. Using a combination of N-body simulations and a semi-analytical model, we investigate the variance in subhalo mass fractions and subhalo occupation numbers, with an emphasis on how these statistics scale with halo formation time. We demonstrate that the subhalo mass fraction, f_sub, is mainly a function of halo formation time, with earlier forming haloes having less substructure. At fixed formation redshift, the average f_sub is virtually independent of halo mass, and the mass dependence of f_sub is therefore mainly a manifestation of more massive haloes assembling later. We compare observational constraints on f_sub from gravitational lensing to our model predictions and simulation results. Although the inferred f_sub are substantially higher than the median LCDM predictions, they fall within the 95th percentile due to halo-to-halo variance. We show that while the halo occupation distribution of subhaloes, P(N|M), is super-Poissonian for large <N>, a well established result, it becomes sub-Poissonian for <N> < 2. Ignoring the non-Poissonity results in systematic errors of the clustering of galaxies of a few percent, and with a complicated scale- and luminosity-dependence. Earlier-formed haloes have P(N|M) closer to a Poisson distribution, suggesting that the dynamical evolution of subhaloes drives the statistics towards Poissonian. Contrary to a recent claim, the non-Poissonity of subhalo occupation statistics does not vanish by selecting haloes with fixed mass and fixed formation redshift. Finally, we use subhalo occupation statistics to put loose constraints on the mass and formation redshift of the Milky Way halo. Using observational constraints on the V_max of the most massive satellites, we infer that 0.25<M_vir/10^12M_sun/h<1.4 and 0.1<z_f<1.4 at 90% confidence.

قيم البحث

اقرأ أيضاً

The presence of dark matter substructure will boost the signatures of dark matter annihilation. We review recent progress on estimates of this subhalo boost factor---a ratio of the luminosity from annihilation in the subhalos to that originating the smooth component---based on both numerical $N$-body simulations and semi-analytic modelings. Since subhalos of all the scales, ranging from the Earth mass (as expected, e.g., the supersymmetric neutralino, a prime candidate for cold dark matter) to galaxies or larger, give substantial contribution to the annihilation rate, it is essential to understand subhalo properties over a large dynamic range of more than twenty orders of magnitude in masses. Even though numerical simulations give the most accurate assessment in resolved regimes, extrapolating the subhalo properties down in sub-grid scales comes with great uncertainties---a straightforward extrapolation yields a very large amount of the subhalo boost factor of $gtrsim$100 for galaxy-size halos. Physically motivated theoretical models based on analytic prescriptions such as the extended Press-Schechter formalism and tidal stripping modeling, which are well tested against the simulation results, predict a more modest boost of order unity for the galaxy-size halos. Giving an accurate assessment of the boost factor is essential for indirect dark matter searches and thus, having models calibrated at large ranges of host masses and redshifts, is strongly urged upon.
We investigate the correlation between nine different dark matter halo properties using a rank correlation analysis and a Principal Component Analysis for a sample of haloes spanning five orders of magnitude in mass. We consider mass and dimensionles s measures of concentration, age, relaxedness, sphericity, triaxiality, substructure, spin, and environment, where the latter is defined in a way that makes it insensitive to mass. We find that concentration is the most fundamental property. Except for environment, all parameters are strongly correlated with concentration. Concentration, age, substructure, mass, sphericity and relaxedness can be considered a single family of parameters, albeit with substantial scatter. In contrast, spin, environment, and triaxiality are more independent, although spin does correlate strongly with substructure and both spin and triaxiality correlate substantially with concentration. Although mass sets the scale of a halo, all other properties are more sensitive to concentration.
171 - Fangzhou Jiang 2014
We present a new, semi-analytical model describing the evolution of dark matter subhaloes. The model uses merger trees constructed using the method of Parkinson et al. (2008) to describe the masses and redshifts of subhaloes at accretion, which are s ubsequently evolved using a simple model for the orbit-averaged mass loss rates. The model is extremely fast, treats subhaloes of all orders, accounts for scatter in orbital properties and halo concentrations, and uses a simple recipe to convert subhalo mass to maximum circular velocity. The model accurately reproduces the average subhalo mass and velocity functions in numerical simulations. The inferred subhalo mass loss rates imply that an average dark matter subhalo loses in excess of 80 percent of its infall mass during its first radial orbit within the host halo. We demonstrate that the total mass fraction in subhaloes is tightly correlated with the `dynamical age of the host halo, defined as the number of halo dynamical times that have elapsed since its formation. Using this relation, we present universal fitting functions for the evolved and unevolved subhalo mass and velocity functions that are valid for any host halo mass, at any redshift, and for any {Lambda}CDM cosmology.
We compare subhalo mass and velocity functions obtained from different simulations with different subhalo finders among each other, and with predictions from the new semi-analytical model of Jiang & van den Bosch (2014). We find that subhalo mass fun ctions (SHMFs) obtained using different subhalo finders agree with each other at the level of ~ 20 percent, but only at the low mass end. At the massive end, subhalo finders that identify subhaloes based purely on density in configuration space dramatically underpredict the subhalo abundances by more than an order of magnitude. These problems are much less severe for subhalo velocity functions (SHVFs), indicating that they arise from issues related to assigning masses to the subhaloes, rather than from detecting them. Overall the predictions from the semi-analytical model are in excellent agreement with simulation results obtained using the more advanced subhalo finders that use information in six dimensional phase-space. In particular, the model accurately reproduces the slope and host-mass-dependent normalization of both the subhalo mass and velocity functions. We find that the SHMFs and SHVFs have power-law slopes of 0.82 and 2.6, respectively, significantly shallower than what has been claimed in several studies in the literature.
Spectroscopic observations at the Russian 6-m telescope are used to study the two polar ring galaxies (PRGs) from the catalogue by Moiseev et al.: SPRC-7 and SPRC-260. We have analyzed the kinematics of the stellar component of the central galaxies a s well as the ionized gas kinematics in the external ring structures. The disc-halo decomposition of rotation curves in two perpendicular directions are considered. The observed 2D velocity fields are compared with the model predictions for different dark halo shapes. Based on these data, we constrain that for potential of DM halo semiaxis ratios is $s=0.8$, $q=1$ for SPRC-7 and $s=0.95$, $q=1.1$ for SPRC-260. Using 3D hydrodynamic simulations we also study the dynamics and evolution of the polar component in the potential of the galactic disc and dark halo for these two galaxies. We show that the polar component is dynamically quasi-stable on the scale of $sim10$ dynamical times (about a few Gyr). This is demonstrate the possibility for the growth of a spiral structure, which then steadily transforms to a lopsided gaseous system in the polar pane.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا