ترغب بنشر مسار تعليمي؟ اضغط هنا

Anomalous Charge Density Wave State Evolution and Dome-like Superconductivity in CuIr2Te4-xSex Chalcogenides

306   0   0.0 ( 0 )
 نشر من قبل Huixia Luo
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the anomalous charge density wave (CDW) state evolution and dome-like superconductivity (SC) in CuIr2Te4-xSex series. Room temperature powder X ray-diffraction (PXRD) results indicate that CuIr2Te4-xSex compounds retain the same structure as the host CuIr2Te4 and the unit cell constants a and c manifest a linear decline with increasing Se content. Magnetization, resistivity and heat capacity results suggest that superconducting transition temperature (Tc) exhibits a weak dome-like variation as substituting Te by Se with the maximum Tc = 2.83 K for x = 0.1 followed by suppression in Tc and simultaneous decrease of the superconducting volume fraction. Unexpectedly, the CDW-like transition (TCDW) is suppressed with lower Se doping but re-emerges at higher doping. Meanwhile, the temperature-dependent XRD measurements show that the trigonal structure is stable at 20 K, 100 K and 300 K for the host sample and the doping composition with x = 0.5, thus we propose that the behaviour CDW-like transition arises from the disorder effect created by chemical doping and is not related to structural transition. The lower and the upper critical fields of these compounds are also addressed.

قيم البحث

اقرأ أيضاً

Here we report a systematic investigation on the evolution of the structural and physical properties, including the charge density wave and superconductivity of the polycrystalline CuIr2Te4-xIx. X-ray diffraction results indicate that both of a and c lattice parameters increase linearly. The resistivity measurements indicate that the charge density wave is destabilized with slight x but reappears when x is large than 0.9. Meanwhile, the superconducting transition temperature enhances as x raises and reaches a maximum value of around 2.95 K for the optimal composition CuIr2Te3.9I0.1 followed by a slight decrease with higher iodine doping content. The specific heat jump for the optimal composition CuIr2Te3.9I0.1 is approximately 1.46, which is close to the Bardeen Cooper Schrieffer value which is 1.43, indicating it is a bulk superconductor. The results of thermodynamic heat capacity measurements under different magnetic fields, magnetization and magneto-transport measurements further suggest that CuIr2Te4-xIx bulks are type II superconductors. Finally, an electronic phase diagram for this CuIr2Te4-xIx system has been constructed. The present study provides a suitable material platform for further investigation of the interplay of the CDW and superconductivity.
100 - S. Cui , L. P. He , X. C. Hong 2016
Recently it was found that selenium doping can suppress the charge-density-wave (CDW) order and induce bulk superconductivity in ZrTe$_3$. The observed superconducting dome suggests the existence of a CDW quantum critical point (QCP) in ZrTe$_{3-x}$S e$_x$ near $x approx$ 0.04. To elucidate its superconducting state near the CDW QCP, we measure the thermal conductivity of two ZrTe$_{3-x}$Se$_x$ single crystals ($x$ = 0.044 and 0.051) down to 80 mK. For both samples, the residual linear term $kappa_0/T$ at zero field is negligible, which is a clear evidence for nodeless superconducting gap. Furthermore, the field dependence of $kappa_0/T$ manifests multigap behavior. These results demonstrate multiple nodeless superconducting gaps in ZrTe$_{3-x}$Se$_x$, which indicates conventional superconductivity despite of the existence of a CDW QCP.
We explore the interplay of a charge density wave (CDW) order and s-wave superconductivity (sSC) in a disordered system. Recent experiments on 1T-TiSe_2, where the pristine sample has a commensurate CDW order and the superconductivity appears upon co pper intercalation, motivates our study. Starting with an extended Hubbard model, with parameters which yield a CDW ground state within Hartree-Fock-Bogoliubov formalism in pure systems, we show that the addition of disorder quickly wipes out the global charge order by disrupting periodic modulation of density at some (low) strength of disorder. Along with this, the subdominant superconducting order emerges in regions that spatially anti-correlates with islands of strong local CDW order. The short-range density modulations, however, continue to persist and show discernible effects up to a larger disorder strength. The local CDW puddles reduce in size with increasing disorder and they finally lose their relevance in effecting the properties of the system. Our results have strong implications for the experimental phase diagram of transition metal dichalcogenides.
Significant manifestation of interplay of superconductivity and charge density wave, spin density wave or magnetism is dome-like variation in superconducting critical temperature (Tc) for cuprate, iron-based and heavy Fermion superconductors. Overall behavior is that the ordered temperature is gradually suppressed and the Tc is enhanced under external control parameters. Many phenomena like pesudogap, quantum critical point and strange metal emerge in the different doping range. Exploring dome-shaped Tc in new superconductors is of importance to detect emergent effects. Here, we report that the observation of superconductivity in new layered Cu-based compound RE2Cu5As3O2 (RE=La, Pr, Nd), in which the Tc exhibits dome-like variation with maximum Tc of 2.5 K, 1.2 K and 1.0 K as substituting Cu by large amount of Ni ions. The transitions of T* in former two compounds can be suppressed by either Ni doping or rare earth replacement. Simultaneously, the structural parameters like As-As bond length and c/a ratio exhibit unusual variations as Ni-doping level goes through the optimal value. The robustness of superconductivity, up to 60% of Ni doping, reveals the unexpected impurity effect on inducing and enhancing superconductivity in this novel layered materials
361 - Dong Yan , Yijie Zeng , Yishi Lin 2020
The interplay between superconductivity and charge density wave (CDW)/metal-to-insulator transition (MIT) has long been interested and studied in condensed matter physics. Here we study systematically the charge density wave and superconductivity pro perties in the solid solutions Zn1-xCuxIr2-yN(N = Al, Ti, Rh)yTe4. Resistivity, magnetic susceptibility and specific heat measurements indicate that the CDW state was suppressed immediately while the superconducting critical temperature (Tc) differs from each system. In the Al- and Ti-substitution cases, Tc increase as y increases and reaches a maximum around 2.75 K and 2.84 K respectively at y = 0.075, followed by a decrease of Tc before the chemical phase boundary is reached at y = 0.2. Nevertheless, Tc decreases monotonously with Rh-doping content y increases and disappears above 0.3 with measuring temperature down to 2 K. Surprisingly, in the Zn1-xCuxIr2Te4 solid solution, Tc enhances as x increases and reaches a maximum value of 2.82 K for x = 0.5 but subsequently survives over the whole doping range of 0.00 - 0.9 despite Tc changes slightly with higher doping content, which differs from the observation of zinc doping suppressing the superconductivity quickly in the high Tc cuprate superconductors. The specific heat anomaly at the superconducting transitions for the representative optimal doping samples are all slightly higher than the BCS value of 1.43 and indicate bulk superconductivity in these compounds. Finally, the CDW transition temperature (TCDW) and superconducting transition temperature (Tc) vs. x/y content phase diagrams of Zn1-xCuxIr2-yN(N = Al, Ti, Rh)yTe4 have been established and compared, which offers good opportunity to study the competition between CDW and superconductivity in the telluride chalcogenides.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا