ترغب بنشر مسار تعليمي؟ اضغط هنا

Stimulated photon emission and two-photon Raman scattering in a coupled-cavity QED system

143   0   0.0 ( 0 )
 نشر من قبل Ci Li
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the scattering problem of photon and polariton in a one-dimensional coupled-cavity system. Analytical approximate analysis and numerical simulation show that a photon can stimulate the photon emission from a polariton through polariton-photon collisions. This observation opens the possibility of photon-stimulated transition from insulating to radiative phase in a coupled-cavity QED system. Inversely, we also find that a polariton can be generated by a two-photon Raman scattering process. This paves the way towards single photon storage by the aid of atom-cavity interaction.

قيم البحث

اقرأ أيضاً

93 - Tong Huang , Lei Tan 2021
We propose how to achieve strong photon antibunching effect in a cavity-QED system coupled with two Rydberg-Rydberg interaction atoms. Via calculating the equal time second order correlation function g(2)(0), we find that the unconventional photon bl ockade and the conventional photon blockade appear in the atom-driven scheme, and they are both significantly affected by the Rydberg-Rydberg interaction. We also find that under appropriate parameters, the photon antibunching and the mean photon number can be significantly enhanced by combining the conventional photon blockade and the unconventional photon blockade. In the cavity-driven scheme, the existence of the Rydberg-Rydberg interaction severely destroys the photon antibunching under the unconventional photon blockade mechanism. These results will help to guide the implementation of the single photon emitter in the Rydberg atoms-cavity system.
We investigate the generation of single photons and photon pairs in a cavity quantum electrodynamics system of a four-level quantum dot coupled to bimodal cavity. By tuning frequencies and intensity ratio of the driving lasers, sub-Poissonian and sup er-Poissonian photon statistics are obtained in each nondegenerate cavity mode respectively. Single photon emission is characterized as zero-delay second-order correlation function g^2(0)~0.15. Photon pair emission under the two-photon resonance excitation is quantified by Mandel parameter as Q~0.04. The mean cavity photon number in both scenarios can maintain large around 0.1. As a result, single photon emission and two-photon emission can be integrated in our proposed system only by tuning the external parameters of the driving lasers.
We study two-photon scattering in a mixed cavity optomechanical system, which is composed of a single-mode cavity field coupled to a single-mode mechanical oscillation via both the first-order and quadratic optomechanical interactions. By solving the scattering problem within the Wigner-Weisskopf framework, we obtain the analytical scattering state and find four physical processes associated with the two-photon scattering in this system. We calculate the two-photon scattering spectrum and find that two-photon frequency anticorrelation can be induced in the scattering process. We also establish the relationship between the parameters of the mixed cavity optomechanical system and the characteristics of the two-photon scattering spectrum. This work not only provides a scattering means to create correlated photon pairs, but also presents a spectrometric method to characterize the optomechanical systems.
In ultra- and deep-strong cavity quantum electrodynamics (QED) systems, many intriguing phenomena that do not conserve the excitation number are expected to occur. In this study, we theoretically analyze the optical response of an ultrastrong cavity- QED system in which an atom is coupled to the fundamental and third harmonic modes of a cavity, and report the possibility of deterministic three-photon down-conversion of itinerant photons upon reflection at the cavity. In the conventional parametric down-conversion, a strong input field is needed because of the smallness of the transition matrix elements of the higher order processes. However, if we use an atom-cavity system in an unprecedentedly strong-coupling region, even a weak field in the linear-response regime is sufficient to cause this rare event involving the fourth order transitions.
We report on the fast excitation of a single atom coupled to an optical cavity using laser pulses that are much shorter than all other relevant processes. The cavity frequency constitutes a control parameter that allows the creation of single photons in a superposition of two tunable frequencies. Each photon emitted from the cavity thus exhibits a pronounced amplitude modulation determined by the oscillatory energy exchange between the atom and the cavity. Our technique constitutes a versatile tool for future quantum networking experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا