ﻻ يوجد ملخص باللغة العربية
Low-resource Multilingual Neural Machine Translation (MNMT) is typically tasked with improving the translation performance on one or more language pairs with the aid of high-resource language pairs. In this paper, we propose two simple search based curricula -- orderings of the multilingual training data -- which help improve translation performance in conjunction with existing techniques such as fine-tuning. Additionally, we attempt to learn a curriculum for MNMT from scratch jointly with the training of the translation system with the aid of contextual multi-arm bandits. We show on the FLORES low-resource translation dataset that these learned curricula can provide better starting points for fine tuning and improve overall performance of the translation system.
While monolingual data has been shown to be useful in improving bilingual neural machine translation (NMT), effectively and efficiently leveraging monolingual data for Multilingual NMT (MNMT) systems is a less explored area. In this work, we propose
We investigate the following question for machine translation (MT): can we develop a single universal MT model to serve as the common seed and obtain derivative and improved models on arbitrary language pairs? We propose mRASP, an approach to pre-tra
Multilingual neural machine translation (NMT) enables training a single model that supports translation from multiple source languages into multiple target languages. In this paper, we push the limits of multilingual NMT in terms of number of languag
Learning multilingual and multi-domain translation model is challenging as the heterogeneous and imbalanced data make the model converge inconsistently over different corpora in real world. One common practice is to adjust the share of each corpus in
Multilingual NMT has become an attractive solution for MT deployment in production. But to match bilingual quality, it comes at the cost of larger and slower models. In this work, we consider several ways to make multilingual NMT faster at inference