ترغب بنشر مسار تعليمي؟ اضغط هنا

Eden: A Unified Environment Framework for Booming Reinforcement Learning Algorithms

130   0   0.0 ( 0 )
 نشر من قبل Xiaoyu Wu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

With AlphaGo defeats top human players, reinforcement learning(RL) algorithms have gradually become the code-base of building stronger artificial intelligence(AI). The RL algorithm design firstly needs to adapt to the specific environment, so the designed environment guides the rapid and profound development of RL algorithms. However, the existing environments, which can be divided into real world games and customized toy environments, have obvious shortcomings. For real world games, it is designed for human entertainment, and too much difficult for most of RL researchers. For customized toy environments, there is no widely accepted unified evaluation standard for all RL algorithms. Therefore, we introduce the first virtual user-friendly environment framework for RL. In this framework, the environment can be easily configured to realize all kinds of RL tasks in the mainstream research. Then all the mainstream state-of-the-art(SOTA) RL algorithms can be conveniently evaluated and compared. Therefore, our contributions mainly includes the following aspects: 1.single configured environment for all classification of SOTA RL algorithms; 2.combined environment of more than one classification RL algorithms; 3.the evaluation standard for all kinds of RL algorithms. With all these efforts, a possibility for breeding an AI with capability of general competency in a variety of tasks is provided, and maybe it will open up a new chapter for AI.

قيم البحث

اقرأ أيضاً

In this paper, we present a new class of Markov decision processes (MDPs), called Tsallis MDPs, with Tsallis entropy maximization, which generalizes existing maximum entropy reinforcement learning (RL). A Tsallis MDP provides a unified framework for the original RL problem and RL with various types of entropy, including the well-known standard Shannon-Gibbs (SG) entropy, using an additional real-valued parameter, called an entropic index. By controlling the entropic index, we can generate various types of entropy, including the SG entropy, and a different entropy results in a different class of the optimal policy in Tsallis MDPs. We also provide a full mathematical analysis of Tsallis MDPs, including the optimality condition, performance error bounds, and convergence. Our theoretical result enables us to use any positive entropic index in RL. To handle complex and large-scale problems, we propose a model-free actor-critic RL method using Tsallis entropy maximization. We evaluate the regularization effect of the Tsallis entropy with various values of entropic indices and show that the entropic index controls the exploration tendency of the proposed method. For a different type of RL problems, we find that a different value of the entropic index is desirable. The proposed method is evaluated using the MuJoCo simulator and achieves the state-of-the-art performance.
Model-Based Reinforcement Learning (MBRL) is one category of Reinforcement Learning (RL) algorithms which can improve sampling efficiency by modeling and approximating system dynamics. It has been widely adopted in the research of robotics, autonomou s driving, etc. Despite its popularity, there still lacks some sophisticated and reusable open-source frameworks to facilitate MBRL research and experiments. To fill this gap, we develop a flexible and modularized framework, Baconian, which allows researchers to easily implement a MBRL testbed by customizing or building upon our provided modules and algorithms. Our framework can free users from re-implementing popular MBRL algorithms from scratch thus greatly save users efforts on MBRL experiments.
89 - Huihui Zhang , Wu Huang 2020
In recent years deep neural networks have been successfully applied to the domains of reinforcement learning cite{bengio2009learning,krizhevsky2012imagenet,hinton2006reducing}. Deep reinforcement learning cite{mnih2015human} is reported to have the a dvantage of learning effective policies directly from high-dimensional sensory inputs over traditional agents. However, within the scope of the literature, there is no fundamental change or improvement on the existing training framework. Here we propose a novel training framework that is conceptually comprehensible and potentially easy to be generalized to all feasible algorithms for reinforcement learning. We employ Monte-carlo sampling to achieve raw data inputs, and train them in batch to achieve Markov decision process sequences and synchronously update the network parameters instead of experience replay. This training framework proves to optimize the unbiased approximation of loss function whose estimation exactly matches the real probability distribution data inputs follow, and thus have overwhelming advantages of sample efficiency and convergence rate over existing deep reinforcement learning after evaluating it on both discrete action spaces and continuous control problems. Besides, we propose several algorithms embedded with our new framework to deal with typical discrete and continuous scenarios. These algorithms prove to be far more efficient than their origin
While current benchmark reinforcement learning (RL) tasks have been useful to drive progress in the field, they are in many ways poor substitutes for learning with real-world data. By testing increasingly complex RL algorithms on low-complexity simul ation environments, we often end up with brittle RL policies that generalize poorly beyond the very specific domain. To combat this, we propose three new families of benchmark RL domains that contain some of the complexity of the natural world, while still supporting fast and extensive data acquisition. The proposed domains also permit a characterization of generalization through fair train/test separation, and easy comparison and replication of results. Through this work, we challenge the RL research community to develop more robust algorithms that meet high standards of evaluation.
OpenSpiel is a collection of environments and algorithms for research in general reinforcement learning and search/planning in games. OpenSpiel supports n-player (single- and multi- agent) zero-sum, cooperative and general-sum, one-shot and sequentia l, strictly turn-taking and simultaneous-move, perfect and imperfect information games, as well as traditional multiagent environments such as (partially- and fully- observable) grid worlds and social dilemmas. OpenSpiel also includes tools to analyze learning dynamics and other common evaluation metrics. This document serves both as an overview of the code base and an introduction to the terminology, core concepts, and algorithms across the fields of reinforcement learning, computational game theory, and search.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا