ﻻ يوجد ملخص باللغة العربية
Abstract The transport of nutrients or signal constituents that stimulate growth of bone tissue is supposed to be affected by a static mechanical load. It follows from basic thermodynamical principles that constituents causing volumetric change are dragged along the gradients of hydrostatic stress. The present preliminary study examines the behaviour of iodine present in the medullary cavity of a bovine long bone exposed to mechanical load. A section of the bone is x-ray scanned with the static load present, with and without the iodine. The resulting distribution in a selected 2D plane is numerically evaluated using a discrete Radons inverse transform. The result suggests that iodine is a useful constituent with a good attenuation effect on the x-ray beam and clearly reveals the temporal distribution of its transport through the bone. It further result shows some indication that stress does affect the iodine distribution.
Age-related bone loss and postmenopausal osteoporosis are disorders of bone remodelling, in which less bone is reformed than resorbed. Yet, this dysregulation of bone remodelling does not occur equally in all bone regions. Loss of bone is more pronou
Bone is a biomaterial undergoing continuous renewal. The renewal process is known as bone remodelling and is operated by bone-resorbing cells (osteoclasts) and bone-forming cells (osteoblasts). Both biochemical and biomechanical regulatory mechanisms
Continuum bone remodelling is an important tool for predicting the effects of mechanical stimuli on bone density evolution. While the modelling of only cancellous bone is considered in many studies based on continuum bone remodelling, this work prese
Bone remodelling is carried out by `bone multicellular units (BMUs) in which active osteoclasts and active osteoblasts are spatially and temporally coupled. The refilling of new bone by osteoblasts towards the back of the BMU occurs at a rate that de
During morphogenesis, the shape of a tissue emerges from collective cellular behaviors, which are in part regulated by mechanical and biochemical interactions between cells. Quantification of force and stress is therefore necessary to analyze the mec