ﻻ يوجد ملخص باللغة العربية
Bone is a biomaterial undergoing continuous renewal. The renewal process is known as bone remodelling and is operated by bone-resorbing cells (osteoclasts) and bone-forming cells (osteoblasts). Both biochemical and biomechanical regulatory mechanisms have been identified in the interaction between osteoclasts and osteoblasts. Here we focus on an additional and poorly understood potential regulatory mechanism of bone cells, that involves the morphology of the microstructure of bone. Bone cells can only remove and replace bone at a bone surface. However, the microscopic availability of bone surface depends in turn on the ever-changing bone microstructure. The importance of this geometrical dependence is unknown and difficult to quantify experimentally. Therefore, we develop a sophisticated mathematical model of bone cell interactions that takes into account biochemical, biomechanical and geometrical regulations. We then investigate numerically the influence of bone surface availability in bone remodelling within a representative bone tissue sample. The interdependence between the bone cells activity, which modifies the bone microstructure, and changes in the microscopic bone surface availability, which in turn influences bone cell development and activity, is implemented using a remarkable experimental relationship between bone specific surface and bone porosity. Our model suggests that geometrical regulation of the activation of new remodelling events could have a significant effect on bone porosity and bone stiffness. On the other hand, geometrical regulation of late stages of osteoblast and osteoclast differentiation seems less significant. We conclude that the development of osteoporosis is probably accelerated by this geometrical regulation in cortical bone, but probably slowed down in trabecular bone.
Age-related bone loss and postmenopausal osteoporosis are disorders of bone remodelling, in which less bone is reformed than resorbed. Yet, this dysregulation of bone remodelling does not occur equally in all bone regions. Loss of bone is more pronou
Bone remodelling is carried out by `bone multicellular units (BMUs) in which active osteoclasts and active osteoblasts are spatially and temporally coupled. The refilling of new bone by osteoblasts towards the back of the BMU occurs at a rate that de
Bone remodelling maintains the functionality of skeletal tissue by locally coordinating bone-resorbing cells (osteoclasts) and bone-forming cells (osteoblasts) in the form of Bone Multicellular Units (BMUs). Understanding the emergence of such struct
Continuum bone remodelling is an important tool for predicting the effects of mechanical stimuli on bone density evolution. While the modelling of only cancellous bone is considered in many studies based on continuum bone remodelling, this work prese
To maintain bone mass during bone remodelling, coupling is required between bone resorption and bone formation. This coordination is achieved by a network of autocrine and paracrine signalling molecules between cells of the osteoclast lineage and cel