ترغب بنشر مسار تعليمي؟ اضغط هنا

Developing Virtual Reality Activities for the Astro 101 Class and Lab

85   0   0.0 ( 0 )
 نشر من قبل Gur Windmiller
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on our ongoing efforts to develop, implement, and test VR activities for the introductory astronomy course and laboratory. Specifically, we developed immersive activities for two challenging 3D concepts: Moon phases, and stellar parallax. For Moon phases, we built a simulation on the Universe Sandbox platform and developed a set of activities that included flying to different locations/viewpoints and moving the Moon by hand. This allowed the students to create and experience the phases and the eclipses from different vantage points, including seeing the phases of the Earth from the Moon. We tested the efficacy of these activities on a large cohort (N=116) of general education astronomy students, drawing on our experience with a previous VR Moon phase exercise (Blanco (2019)). We were able to determine that VRbased techniques perform comparably well against other teaching methods. We also worked with the studentrun VR Club at San Diego State University, using the Unity software engine to create a simulated space environment, where students could kinesthetically explore stellar parallax - both by moving themselves and by measuring parallactic motion while traveling in an orbit. The students then derived a quantitative distance estimate using the parallax angle they measured while in the virtual environment. Future plans include an immersive VR activity to demonstrate the Hubble expansion and measure the age of the Universe. These serve as examples of how one develops VR activities from the ground up, with associated pitfalls and tradeoffs.

قيم البحث

اقرأ أيضاً

The ground-breaking image of a black holes event horizon, which captured the publics attention and imagination in April 2019, was captured using the power of interferometry: many separate telescopes working together to observe the cosmos in incredibl e detail. Many recent astrophysical discoveries that have revolutionized the scientific communitys understanding of the cosmos were made by interferometers such as LIGO, ALMA, and the Event Horizon Telescope. Astro 101 instructors who want their students to learn the science behind these discoveries must teach about interferometry. Decades of research show that using active learning strategies can significantly increase students learning and reduces achievement gaps between different demographic groups over what is achieved from traditional lecture-based instruction. As part of an effort to create active learning materials on interferometry, we developed and tested a new Lecture-Tutorial to help Astro 101 students learn about key properties of astronomical interferometers. This paper describes this new Lecture-Tutorial and presents evidence for its effectiveness from a study conducted with 266 Astro 101 students at the University of North Carolina at Chapel Hill.
Introductory electricity and magnetism lab manual was designed to use with virtual Physics II class. The lab manual consists of experiments on electrostatics, electric potential and energy, current and resistance, DC circuits, electromagnetism, and A C circuits. Virtual experiments were based on simulations. Open educational resources (OER) were used for all experiments. Virtual experiments were designed to simulate in-person physical lab experiments. Special emphasis was given to computational data analysis with excel. Formatted excel sheets per each lab were given to students and step by step calculation in excel were explained during the synchronous class. Learning management system (LMS) was used to fully web enhance the lab class. Virtual labs were delivered by using live video conference technology and recorded lab sessions were added to LMS. Lab class were tested with both virtual delivery methods (synchronous and asynchronous). Student learning outcomes (understand, apply, analyze and evaluate) were studied with detailed lab reports and end of the semester lab-based written exam which confirmed the virtual lab class was as effective as the in-person physical lab class.
A set of virtual experiments were designed to use with introductory physics I (analytical and general) class, which covers kinematics, Newton laws, energy, momentum, and rotational dynamics. Virtual experiments were based on video analysis and simula tions. Only open educational resources (OER) were used for experiments. Virtual experiments were designed to simulate in-person physical laboratory experiments. All the calculations and data analysis (analytical and graphical) were done with Microsoft excel. Formatted excel tables were given to students and step by step calculations with excel were done during the class. Specific emphasis was given to student learning outcomes such as understand, apply, analyze and evaluate. Student learning outcomes were studied with detailed lab reports per each experiment and end of the semester written exam (which based on experiments). Lab class was fully web-enhanced and managed by using a Learning management system (LMS). Every lab class was recorded and added to the LMS. Virtual labs were done by using live video conference technology and labs were tested with the both synchronous and asynchronous type of remote teaching methods.
A ball on a stick is a common and simple activity for teaching the phases of the Moon. This activity, like many others in physics and astronomy, gives students a perspective they otherwise could only imagine. For Moon phases, a third person view and control over time allows students to rapidly build a mental model that connects all the moving parts. Computer simulations of many traditional physics and astronomy activities provide new features, controls, or vantage points to enhance learning beyond a hands-on activity. Virtual reality provides the capabilities of computer simulations and embodied cognition experiences through a hands-on activity making it a natural step to improve learning. We recreated the traditional ball-and-stick moon phases activity in virtual reality and compared participant learning using this simulation with using traditional methods. We found a strong participant preference for VR relative to the traditional methods. However, we observed no difference across conditions in average levels of performance on a pre/post knowledge test.
Although developing proficiency with modeling is a nationally endorsed learning outcome for upper-division undergraduate physics lab courses, no corresponding research-based assessments exist. Our longterm goal is to develop assessments of students m odeling ability that are relevant across multiple upper-division lab contexts. To this end, we interviewed 19 instructors from 16 institutions about optics lab activities that incorporate photodiodes. Interviews focused on how those activities were designed to engage students in some aspects of modeling. We find that, according to many interviewees, iteration is an important aspect of modeling. In addition, interviewees described four distinct types of iteration: revising apparatuses, revising models, revising data-taking procedures, and repeating data collection using existing apparatuses and procedures. We provide examples of each type of iteration, and discuss implications for the development of future modeling assessments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا