ترغب بنشر مسار تعليمي؟ اضغط هنا

The Spatiotemporal Evolution of Temperature During Transient Heating of Nanoparticle Arrays

85   0   0.0 ( 0 )
 نشر من قبل Zhenpeng Qin
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Nanoparticle (NP) are promising agents to absorb external energy excitation and generate heat. Cluster of NPs or NP array heating have found essential roles for biomedical applications, diagnostic techniques and chemical catalysis. Various studies have shed light on the heat transfer of nanostructures and greatly advanced our understanding of NP array heating. However, there is a lack of analytical tools and dimensionless parameters to describe the transient heating of NP arrays. Here we demonstrate a comprehensive analysis of the transient NP array heating. Firstly, we developed analytical solution for the NP array heating and provide a useful mathematical description of the spatial-temporal evolution of temperature for 2D, 3D and spherical NP array heating. Based on this, we proposed the idea of thermal resolution that quantifies the relationship between minimal heating time, NP array size, energy intensity and target temperature. Lastly, we define a dimensionless parameter that characterize the transition from confined heating to delocalized heating. This study advances the in-depth understanding of nanomaterials heating and provides guidance for rationally designing innovative approaches for NP array heating.



قيم البحث

اقرأ أيضاً

We report the design and development of a dual-functional magnetic nanoparticle platform for potential treatment of H. pylori infection. We show that an ultralow concentration of Mn0.3Fe2.7O4@SiO2 nanoparticles subjected to a moderate AC magnetic fie ld, without bulk heating effect, can deposit heat locally and effectively inhibit H. pylori growth and virulence in vitro. When coupled with antibiotic amoxicillin, the dual-functional amoxicillin loaded Mn0.3Fe2.7O4@SiO2 further decreases the bacteria survival rate by a factor of 7 and 5, respectively, compared to amoxicillin treatment and nanoparticle heating alone. The synergistic effect can be partially attributed to the heating induced damage to the cell membrane and protective biofilm, which may increase the permeability of antibiotics to bacteria. Our method provides a viable approach to treat H. pylori infection, with the potential of reducing side effects and enhancing the efficacy for combating drug resistant strains.
With excellent folding-induced deformability and shape reconfigurability, origami-based designs have shown great potentials in developing deployable structures. Noting that origami deployment is essentially a dynamic process, while its dynamical beha viors remain largely unexplored owing to the challenges in modeling. This research aims at advancing the state of the art of origami deployable structures by exploring the transient dynamics under free deployment, with the Miura-origami tube being selected as the object of study because it possesses relatively simple geometry, exceptional kinematic properties, and wide applications. In detail, a preliminary free deployment test is performed, which indicates that the transient oscillation in the transverse direction is nonnegligible and the tube deployment is no longer a single-degree-of-freedom (SDOF) mechanism. Based on experimental observations, four assumptions are made for modeling purposes, and a 2N-DOF dynamic model is established for an N-cell Miura-origami tube to predict the transient oscillations in both the deploying and the transverse directions. Employing the settling times and the overshoot values as the transient dynamic indexes, a comprehensive parameter study is then carried out. It reveals that both the physical and geometrical parameters will significantly affect the transient deploying dynamics, with some of the parameter dependence relationships being counter-intuitive. The results show that the relationships between the transient dynamic behaviors and the examined parameters are sometimes contradictory in the deploying and the transverse directions, suggesting the necessity of a compromise in design.
129 - Rajat M. Thomas 2010
Simulations estimating the differential brightness temperature of the redshifted 21-cm from the epoch of reionization (EoR) often assume that the spin temperature is decoupled from the background CMB temperature and is much larger than it. Although a valid assumption towards the latter stages of the reionization process, it does not necessarily hold at the earlier epochs. Violation of this assumption will lead to fluctuations in differential brightness temperature that are neither driven by density fluctuations nor by HII regions. Therefore, it is vital to calculate the spin temperature self-consistently by treating the Lyman-alpha and collisional coupling of spin temperature to the kinetic temperature. In this paper we develop an extension to the BEARS algorithm, originally developed to model reionization history, to include these coupling effects. Here we simulate the effect in ionization and heating for three models in which the reionization is driven by stars, miniqsos or a mixture of both.We also perform a number of statistical tests to quantify the imprint of the self-consistent inclusion of the spin temperature decoupling from the CMB. We find that the evolution of the spin temperature has an impact on the measured signal specially at redshifts higher than 10 and such evolution should be taken into account when one attempts to interpret the observational data.
In the present investigation, a strongly bonded strip of an aluminium-magnesium based alloy AA5086 is successfully produced through accumulative roll bonding (ARB). A maximum of up to eight passes has been used for the purpose. Microstructural charac terization using electron backscatter diffraction (EBSD) technique indicates the formation of submicron sized (~200-300 nm) subgrains inside the layered microstructure. The material is strongly textured where individual layers possess typical FCC rolling texture components. More than three times enhancement in 0.2% proof stress (PS) has been obtained after 8 passes due to grain refinement and strain hardening
Additive manufacturing parameters of high-performance polymers greatly affect the thermal history and consequently quality of the end-part. For fused deposition modeling (FDM), this may include printing speed, filament size, nozzle, and chamber tempe ratures, as well as build plate temperature. In this study, the effect of thermal convection inside a commercial 3D printer on thermal history and crystalline morphology of polyetheretherketone (PEEK) was investigated using a combined experimental and numerical approach. Using digital scanning calorimetry (DSC) and polarized optical microscopy (POM), crystallinity of PEEK samples was studied as a function of thermal history. In addition, using finite element (FE) simulations of heat transfer, which were calibrated using thermocouple measurements, thermal history of parts during virtual 3D printing was evaluated. By correlating the experimental and numerical results, the effect of printing parameters and convection on thermal history and PEEK crystalline morphology was established. It was found that the high melting temperature of PEEK, results in fast melt cooling rates followed by short annealing times during printing, leading to relatively low degree of crystallinity (DOC) and small crystalline morphology.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا