ترغب بنشر مسار تعليمي؟ اضغط هنا

SetMargin Loss applied to Deep Keystroke Biometrics with Circle Packing Interpretation

48   0   0.0 ( 0 )
 نشر من قبل Aythami Morales
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This work presents a new deep learning approach for keystroke biometrics based on a novel Distance Metric Learning method (DML). DML maps input data into a learned representation space that reveals a semantic structure based on distances. In this work, we propose a novel DML method specifically designed to address the challenges associated to free-text keystroke identification where the classes used in learning and inference are disjoint. The proposed SetMargin Loss (SM-L) extends traditional DML approaches with a learning process guided by pairs of sets instead of pairs of samples, as done traditionally. The proposed learning strategy allows to enlarge inter-class distances while maintaining the intra-class structure of keystroke dynamics. We analyze the resulting representation space using the mathematical problem known as Circle Packing, which provides neighbourhood structures with a theoretical maximum inter-class distance. We finally prove experimentally the effectiveness of the proposed approach on a challenging task: keystroke biometric identification over a large set of 78,000 subjects. Our method achieves state-of-the-art accuracy on a comparison performed with the best existing approaches.

قيم البحث

اقرأ أيضاً

We consider the online problem of packing circles into a square container. A sequence of circles has to be packed one at a time, without knowledge of the following incoming circles and without moving previously packed circles. We present an algorithm that packs any online sequence of circles with a combined area not larger than 0.350389 0.350389 of the squares area, improving the previous best value of {pi}/10 approx 0.31416; even in an offline setting, there is an upper bound of {pi}/(3 + 2 sqrt{2}) approx 0.5390. If only circles with radii of at least 0.026622 are considered, our algorithm achieves the higher value 0.375898. As a byproduct, we give an online algorithm for packing circles into a 1times b rectangle with b geq 1. This algorithm is worst case-optimal for b geq 2.36.
Extreme Learning Machine is a powerful classification method very competitive existing classification methods. It is extremely fast at training. Nevertheless, it cannot perform face verification tasks properly because face verification tasks require comparison of facial images of two individuals at the same time and decide whether the two faces identify the same person. The structure of Extreme Leaning Machine was not designed to feed two input data streams simultaneously, thus, in 2-input scenarios Extreme Learning Machine methods are normally applied using concatenated inputs. However, this setup consumes two times more computational resources and it is not optimized for recognition tasks where learning a separable distance metric is critical. For these reasons, we propose and develop a Siamese Extreme Learning Machine (SELM). SELM was designed to be fed with two data streams in parallel simultaneously. It utilizes a dual-stream Siamese condition in the extra Siamese layer to transform the data before passing it along to the hidden layer. Moreover, we propose a Gender-Ethnicity-Dependent triplet feature exclusively trained on a variety of specific demographic groups. This feature enables learning and extracting of useful facial features of each group. Experiments were conducted to evaluate and compare the performances of SELM, Extreme Learning Machine, and DCNN. The experimental results showed that the proposed feature was able to perform correct classification at 97.87% accuracy and 99.45% AUC. They also showed that using SELM in conjunction with the proposed feature provided 98.31% accuracy and 99.72% AUC. They outperformed the well-known DCNN and Extreme Leaning Machine methods by a wide margin.
This paper provides a pair similarity optimization viewpoint on deep feature learning, aiming to maximize the within-class similarity $s_p$ and minimize the between-class similarity $s_n$. We find a majority of loss functions, including the triplet l oss and the softmax plus cross-entropy loss, embed $s_n$ and $s_p$ into similarity pairs and seek to reduce $(s_n-s_p)$. Such an optimization manner is inflexible, because the penalty strength on every single similarity score is restricted to be equal. Our intuition is that if a similarity score deviates far from the optimum, it should be emphasized. To this end, we simply re-weight each similarity to highlight the less-optimized similarity scores. It results in a Circle loss, which is named due to its circular decision boundary. The Circle loss has a unified formula for two elemental deep feature learning approaches, i.e. learning with class-level labels and pair-wise labels. Analytically, we show that the Circle loss offers a more flexible optimization approach towards a more definite convergence target, compared with the loss functions optimizing $(s_n-s_p)$. Experimentally, we demonstrate the superiority of the Circle loss on a variety of deep feature learning tasks. On face recognition, person re-identification, as well as several fine-grained image retrieval datasets, the achieved performance is on par with the state of the art.
The most popular face recognition benchmarks assume a distribution of subjects without much attention to their demographic attributes. In this work, we perform a comprehensive discrimination-aware experimentation of deep learning-based face recogniti on. The main aim of this study is focused on a better understanding of the feature space generated by deep models, and the performance achieved over different demographic groups. We also propose a general formulation of algorithmic discrimination with application to face biometrics. The experiments are conducted over the new DiveFace database composed of 24K identities from six different demographic groups. Two popular face recognition models are considered in the experimental framework: ResNet-50 and VGG-Face. We experimentally show that demographic groups highly represented in popular face databases have led to popular pre-trained deep face models presenting strong algorithmic discrimination. That discrimination can be observed both qualitatively at the feature space of the deep models and quantitatively in large performance differences when applying those models in different demographic groups, e.g. for face biometrics.
Image semantic segmentation is more and more being of interest for computer vision and machine learning researchers. Many applications on the rise need accurate and efficient segmentation mechanisms: autonomous driving, indoor navigation, and even vi rtual or augmented reality systems to name a few. This demand coincides with the rise of deep learning approaches in almost every field or application target related to computer vision, including semantic segmentation or scene understanding. This paper provides a review on deep learning methods for semantic segmentation applied to various application areas. Firstly, we describe the terminology of this field as well as mandatory background concepts. Next, the main datasets and challenges are exposed to help researchers decide which are the ones that best suit their needs and their targets. Then, existing methods are reviewed, highlighting their contributions and their significance in the field. Finally, quantitative results are given for the described methods and the datasets in which they were evaluated, following up with a discussion of the results. At last, we point out a set of promising future works and draw our own conclusions about the state of the art of semantic segmentation using deep learning techniques.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا