ترغب بنشر مسار تعليمي؟ اضغط هنا

SELM: Siamese Extreme Learning Machine with Application to Face Biometrics

131   0   0.0 ( 0 )
 نشر من قبل Kitsuchart Pasupa
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Extreme Learning Machine is a powerful classification method very competitive existing classification methods. It is extremely fast at training. Nevertheless, it cannot perform face verification tasks properly because face verification tasks require comparison of facial images of two individuals at the same time and decide whether the two faces identify the same person. The structure of Extreme Leaning Machine was not designed to feed two input data streams simultaneously, thus, in 2-input scenarios Extreme Learning Machine methods are normally applied using concatenated inputs. However, this setup consumes two times more computational resources and it is not optimized for recognition tasks where learning a separable distance metric is critical. For these reasons, we propose and develop a Siamese Extreme Learning Machine (SELM). SELM was designed to be fed with two data streams in parallel simultaneously. It utilizes a dual-stream Siamese condition in the extra Siamese layer to transform the data before passing it along to the hidden layer. Moreover, we propose a Gender-Ethnicity-Dependent triplet feature exclusively trained on a variety of specific demographic groups. This feature enables learning and extracting of useful facial features of each group. Experiments were conducted to evaluate and compare the performances of SELM, Extreme Learning Machine, and DCNN. The experimental results showed that the proposed feature was able to perform correct classification at 97.87% accuracy and 99.45% AUC. They also showed that using SELM in conjunction with the proposed feature provided 98.31% accuracy and 99.72% AUC. They outperformed the well-known DCNN and Extreme Leaning Machine methods by a wide margin.



قيم البحث

اقرأ أيضاً

This paper presents an approach for recognizing human activities from extreme low resolution (e.g., 16x12) videos. Extreme low resolution recognition is not only necessary for analyzing actions at a distance but also is crucial for enabling privacy-p reserving recognition of human activities. We design a new two-stream multi-Siamese convolutional neural network. The idea is to explicitly capture the inherent property of low resolution (LR) videos that two images originated from the exact same scene often have totally different pixel values depending on their LR transformations. Our approach learns the shared embedding space that maps LR videos with the same content to the same location regardless of their transformations. We experimentally confirm that our approach of jointly learning such transform robust LR video representation and the classifier outperforms the previous state-of-the-art low resolution recognition approaches on two public standard datasets by a meaningful margin.
The most popular face recognition benchmarks assume a distribution of subjects without much attention to their demographic attributes. In this work, we perform a comprehensive discrimination-aware experimentation of deep learning-based face recogniti on. The main aim of this study is focused on a better understanding of the feature space generated by deep models, and the performance achieved over different demographic groups. We also propose a general formulation of algorithmic discrimination with application to face biometrics. The experiments are conducted over the new DiveFace database composed of 24K identities from six different demographic groups. Two popular face recognition models are considered in the experimental framework: ResNet-50 and VGG-Face. We experimentally show that demographic groups highly represented in popular face databases have led to popular pre-trained deep face models presenting strong algorithmic discrimination. That discrimination can be observed both qualitatively at the feature space of the deep models and quantitatively in large performance differences when applying those models in different demographic groups, e.g. for face biometrics.
In this work, we present a general framework for building a biometrics system capable of capturing multispectral data from a series of sensors synchronized with active illumination sources. The framework unifies the system design for different biomet ric modalities and its realization on face, finger and iris data is described in detail. To the best of our knowledge, the presented design is the first to employ such a diverse set of electromagnetic spectrum bands, ranging from visible to long-wave-infrared wavelengths, and is capable of acquiring large volumes of data in seconds. Having performed a series of data collections, we run a comprehensive analysis on the captured data using a deep-learning classifier for presentation attack detection. Our study follows a data-centric approach attempting to highlight the strengths and weaknesses of each spectral band at distinguishing live from fake samples.
Tiny object classification problem exists in many machine learning applications like medical imaging or remote sensing, where the object of interest usually occupies a small region of the whole image. It is challenging to design an efficient machine learning model with respect to tiny object of interest. Current neural network structures are unable to deal with tiny object efficiently because they are mainly developed for images featured by large scale objects. However, in quantum physics, there is a great theoretical foundation guiding us to analyze the target function for image classification regarding to specific objects size ratio. In our work, we apply Tensor Networks to solve this arising tough machine learning problem. First, we summarize the previous work that connects quantum spin model to image classification and bring the theory into the scenario of tiny object classification. Second, we propose using 2D multi-scale entanglement renormalization ansatz (MERA) to classify tiny objects in image. In the end, our experimental results indicate that tensor network models are effective for tiny object classification problem and potentially will beat state-of-the-art. Our codes will be available online https://github.com/timqqt/MERA_Image_Classification.
151 - Julien Mairal 2014
Majorization-minimization algorithms consist of successively minimizing a sequence of upper bounds of the objective function. These upper bounds are tight at the current estimate, and each iteration monotonically drives the objective function downhil l. Such a simple principle is widely applicable and has been very popular in various scientific fields, especially in signal processing and statistics. In this paper, we propose an incremental majorization-minimization scheme for minimizing a large sum of continuous functions, a problem of utmost importance in machine learning. We present convergence guarantees for non-convex and convex optimization when the upper bounds approximate the objective up to a smooth error; we call such upper bounds first-order surrogate functions. More precisely, we study asymptotic stationary point guarantees for non-convex problems, and for convex ones, we provide convergence rates for the expected objective function value. We apply our scheme to composite optimization and obtain a new incremental proximal gradient algorithm with linear convergence rate for strongly convex functions. In our experiments, we show that our method is competitive with the state of the art for solving machine learning problems such as logistic regression when the number of training samples is large enough, and we demonstrate its usefulness for sparse estimation with non-convex penalties.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا