ﻻ يوجد ملخص باللغة العربية
Let $Omegain L^1{({mathbb S^{n-1}})}$, be a function of homogeneous of degree zero, and $M_Omega$ be the Hardy-Littlewood maximal operator associated with $Omega$ defined by $M_Omega(f)(x) = sup_{r>0}frac1{r^n}int_{|x-y|<r}|Omega(x-y)f(y)|dy.$ It was shown by Christ and Rubio de Francia that $|M_Omega(f)|_{L^{1,infty}({mathbb R^n})} le C(|Omega|_{Llog L({mathbb S^{n-1}})}+1)|f|_{L^1({mathbb R^n})}$ provided $Omegain Llog L {({mathbb S^{n-1}})}$. In this paper, we show that, if $Omegain Llog L({mathbb S^{n-1}})$, then for all $fin L^1({mathbb R^n})$, $M_Omega$ enjoys the limiting weak-type behaviors that $$lim_{lambdato 0^+}lambda|{xin{mathbb R^n}:M_Omega(f)(x)>lambda}| = n^{-1}|Omega|_{L^1({mathbb S^{n-1}})}|f|_{L^1({mathbb R^n})}.$$ This removes the smoothness restrictions on the kernel $Omega$, such as Dini-type conditions, in previous results. To prove our result, we present a new upper bound of $|M_Omega|_{L^1to L^{1,infty}}$, which essentially improves the upper bound $C(|Omega|_{Llog L({mathbb S^{n-1}})}+1)$ given by Christ and Rubio de Francia. As a consequence, the upper and lower bounds of $|M_Omega|_{L^1to L^{1,infty}}$ are obtained for $Omegain Llog L {({mathbb S^{n-1}})}$.
Let $Omega$ be a function of homogeneous of degree zero and vanish on the unit sphere $mathbb {S}^n$. In this paper, we investigate the limiting weak-type behavior for singular integral operator $T_Omega$ associated with rough kernel $Omega$. We show
It is well known that the weak ($1,1$) bounds doesnt hold for the strong maximal operators, but it still enjoys certain weak $Llog L$ type norm inequality. Let $Phi_n(t)=t(1+(log^+t)^{n-1})$ and the space $L_{Phi_n}({mathbb R^{n}})$ be the set of all
In this note besides two abstra
This paper shows $$ sup_{fin H^s(mathbb{R}^n)}dim _Hleft{xinmathbb{R}^n: lim_{trightarrow0}e^{it(-Delta)^alpha}f(x) eq f(x)right}leq n+1-frac{2(n+1)s}{n} text{under} begin{cases} ngeq2; alpha>frac12; frac{n}{2(n+1)}<sleqfrac{n}{2} . end{cases} $$
Let $p(cdot): mathbb R^nto(0,1]$ be a variable exponent function satisfying the globally log-Holder continuous condition and $L$ a one to one operator of type $omega$ in $L^2({mathbb R}^n)$, with $omegain[0,,pi/2)$, which has a bounded holomorphic fu