ترغب بنشر مسار تعليمي؟ اضغط هنا

Variable Weak Hardy Spaces $W!H_L^{p(cdot)}({mathbb R}^n)$ Associated with Operators Satisfying Davies-Gaffney Estimates

166   0   0.0 ( 0 )
 نشر من قبل Dachun Yang
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $p(cdot): mathbb R^nto(0,1]$ be a variable exponent function satisfying the globally log-Holder continuous condition and $L$ a one to one operator of type $omega$ in $L^2({mathbb R}^n)$, with $omegain[0,,pi/2)$, which has a bounded holomorphic functional calculus and satisfies the Davies-Gaffney estimates. In this article, the authors introduce the variable weak Hardy space $W!H_L^{p(cdot)}(mathbb R^n)$ associated with $L$ via the corresponding square function. Its molecular characterization is then established by means of the atomic decomposition of the variable weak tent space $W!T^{p(cdot)}(mathbb R^n)$ which is also obtained in this article. In particular, when $L$ is non-negative and self-adjoint, the authors obtain the atomic characterization of $W!H_L^{p(cdot)}(mathbb R^n)$. As an application of the molecular characterization, when $L$ is the second-order divergence form elliptic operator with complex bounded measurable coefficient, the authors prove that the associated Riesz transform $ abla L^{-1/2}$ is bounded from $W!H_L^{p(cdot)}(mathbb R^n)$ to the variable weak Hardy space $W!H^{p(cdot)}(mathbb R^n)$. Moreover, when $L$ is non-negative and self-adjoint with the kernels of ${e^{-tL}}_{t>0}$ satisfying the Gauss upper bound estimates, the atomic characterization of $W!H_L^{p(cdot)}(mathbb R^n)$ is further used to characterize the space via non-tangential maximal functions.

قيم البحث

اقرأ أيضاً

Let $L$ be a one-to-one operator of type $omega$ in $L^2(mathbb{R}^n)$, with $omegain[0,,pi/2)$, which has a bounded holomorphic functional calculus and satisfies the Davies-Gaffney estimates. Let $p(cdot): mathbb{R}^nto(0,,1]$ be a variable exponent function satisfying the globally log-H{o}lder continuous condition. In this article, the authors introduce the variable Hardy space $H^{p(cdot)}_L(mathbb{R}^n)$ associated with $L$. By means of variable tent spaces, the authors establish the molecular characterization of $H^{p(cdot)}_L(mathbb{R}^n)$. Then the authors show that the dual space of $H^{p(cdot)}_L(mathbb{R}^n)$ is the BMO-type space ${rm BMO}_{p(cdot),,L^ast}(mathbb{R}^n)$, where $L^ast$ denotes the adjoint operator of $L$. In particular, when $L$ is the second order divergence form elliptic operator with complex bounded measurable coefficients, the authors obtain the non-tangential maximal function characterization of $H^{p(cdot)}_L(mathbb{R}^n)$ and show that the fractional integral $L^{-alpha}$ for $alphain(0,,frac12]$ is bounded from $H_L^{p(cdot)}(mathbb{R}^n)$ to $H_L^{q(cdot)}(mathbb{R}^n)$ with $frac1{p(cdot)}-frac1{q(cdot)}=frac{2alpha}{n}$ and the Riesz transform $ abla L^{-1/2}$ is bounded from $H^{p(cdot)}_L(mathbb{R}^n)$ to the variable Hardy space $H^{p(cdot)}(mathbb{R}^n)$.
120 - Ciqiang Zhuo , Dachun Yang 2016
Let $p(cdot): mathbb R^nto(0,1]$ be a variable exponent function satisfying the globally $log$-Holder continuous condition and $L$ a non-negative self-adjoint operator on $L^2(mathbb R^n)$ whose heat kernels satisfying the Gaussian upper bound estima tes. Let $H_L^{p(cdot)}(mathbb R^n)$ be the variable exponent Hardy space defined via the Lusin area function associated with the heat kernels ${e^{-t^2L}}_{tin (0,infty)}$. In this article, the authors first establish the atomic characterization of $H_L^{p(cdot)}(mathbb R^n)$; using this, the authors then obtain its non-tangential maximal function characterization which, when $p(cdot)$ is a constant in $(0,1]$, coincides with a recent result by Song and Yan [Adv. Math. 287 (2016), 463-484] and further induces the radial maximal function characterization of $H_L^{p(cdot)}(mathbb R^n)$ under an additional assumption that the heat kernels of $L$ have the Holder regularity.
Let $p(cdot): mathbb R^nto(0,infty)$ be a variable exponent function satisfying the globally log-Holder continuous condition. In this article, the authors first obtain a decomposition for any distribution of the variable weak Hardy space into good an d bad parts and then prove the following real interpolation theorem between the variable Hardy space $H^{p(cdot)}(mathbb R^n)$ and the space $L^{infty}(mathbb R^n)$: begin{equation*} (H^{p(cdot)}(mathbb R^n),L^{infty}(mathbb R^n))_{theta,infty} =W!H^{p(cdot)/(1-theta)}(mathbb R^n),quad thetain(0,1), end{equation*} where $W!H^{p(cdot)/(1-theta)}(mathbb R^n)$ denotes the variable weak Hardy space. As an application, the variable weak Hardy space $W!H^{p(cdot)}(mathbb R^n)$ with $p_-:=mathopmathrm{ess,inf}_{xinrn}p(x)in(1,infty)$ is proved to coincide with the variable Lebesgue space $W!L^{p(cdot)}(mathbb R^n)$.
Let $L$ be a linear operator on $L^2(mathbb R^n)$ generating an analytic semigroup ${e^{-tL}}_{tge0}$ with kernels having pointwise upper bounds and $p(cdot): mathbb R^nto(0,1]$ be a variable exponent function satisfying the globally log-Holder conti nuous condition. In this article, the authors introduce the variable exponent Hardy space associated with the operator $L$, denoted by $H_L^{p(cdot)}(mathbb R^n)$, and the BMO-type space ${mathrm{BMO}}_{p(cdot),L}(mathbb R^n)$. By means of tent spaces with variable exponents, the authors then establish the molecular characterization of $H_L^{p(cdot)}(mathbb R^n)$ and a duality theorem between such a Hardy space and a BMO-type space. As applications, the authors study the boundedness of the fractional integral on these Hardy spaces and the coincidence between $H_L^{p(cdot)}(mathbb R^n)$ and the variable exponent Hardy spaces $H^{p(cdot)}(mathbb R^n)$.
In this paper we consider the Hardy-Lorentz spaces $H^{p,q}(R^n)$, with $0<ple 1$, $0<qle infty$. We discuss the atomic decomposition of the elements in these spaces, their interpolation properties, and the behavior of singular integrals and other operators acting on them.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا