ترغب بنشر مسار تعليمي؟ اضغط هنا

Interplay of magnetism and dimerization in pressurized Kitaev candidate $beta$-Li$_2$IrO$_3$

129   0   0.0 ( 0 )
 نشر من قبل Bin Shen
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present magnetization measurements on polycrystalline $beta$-Li$_2$IrO$_3$ under hydrostatic pressures up to 3 GPa and construct the temperature-pressure phase diagram of this material. The magnetically ordered phase with $T_{rm{N}}simeq 38$ K breaks down upon a pressure-induced first-order phase transition at $p_{rm{c}}$ $approx$ 1.4 GPa and gives way to a high-pressure phase, where a step-like feature in the magnetic susceptibility signals a structural dimerization with a loss of Ir$^{4+}$ magnetic moments. Nevertheless, magnetism manifests itself also above $p_{rm{c}}$ via the Curie-like susceptibility upturn with the effective moment of 0.7 $mu_B$. We suggest that a partially dimerized phase with a mixture of the magnetic and non-magnetic Ir$^{4+}$ sites develops above $p_{rm{c}}$. This phase is thermodynamically stable between 1.7 and 2.7 GPa according to our ab initio calculations. It confines the magnetic Ir$^{4+}$ sites to weakly coupled tetramers with the singlet ground state and no long-range magnetic order. Our results rule out the formation of a pressure-induced spin-liquid phase in $beta$-Li$_2$IrO$_3$ and reveal peculiarities of the magnetism collapse transition in a Kitaev material.

قيم البحث

اقرأ أيضاً

Temperature-pressure phase diagram of the Kitaev hyperhoneycomb iridate $beta$-Li$_2$IrO$_3$ is explored using magnetization, thermal expansion, magnetostriction, and muon spin rotation ($mu$SR) measurements, as well as single-crystal x-ray diffracti on under pressure and ab initio calculations. The Neel temperature of $beta$-Li$_2$IrO$_3$ increases with the slope of 0.9 K/GPa upon initial compression, but the reduction in the polarization field $H_c$ reflects a growing instability of the incommensurate order. At 1.4 GPa, the ordered state breaks down upon a first-order transition giving way to a new ground state marked by the coexistence of dynamically correlated and frozen spins. This partial freezing in the absence of any conspicuous structural defects may indicate classical nature of the resulting pressure-induced spin liquid, an observation paralleled to the increase in the nearest-neighbor off-diagonal exchange $Gamma$ under pressure.
The family of edge-sharing tri-coordinated iridates and ruthenates has emerged in recent years as a major platform for Kitaev spin liquid physics, where spins fractionalize into emergent magnetic fluxes and Majorana fermions with Dirac-like dispersio ns. While such exotic states are usually pre-empted by long-range magnetic order at low temperatures, signatures of Majorana fermions with long coherent times have been predicted to manifest at intermediate and higher energy scales, similar to the observation of spinons in quasi-1D spin chains. Here we present a Resonant Inelastic X-ray Scattering study of the magnetic excitations of the hyperhoneycomb iridate $beta$-Li$_2$IrO$_3$ under a magnetic field with a record-high-resolution spectrometer. At low-temperatures, dispersing spin waves can be resolved around the predicted intertwined incommensurate spiral and field-induced zigzag orders, whose excitation energy reaches a maximum of 16meV. A 2T magnetic field softens the dispersion around ${bf Q}=0$. The behavior of the spin waves under magnetic field is consistent with our semiclassical calculations for the ground state and the dynamical spin structure factor, which further predicts that the ensued intertwined uniform states remain robust up to very high fields (100 T). Most saliently, the low-energy magnon-like mode is superimposed by a broad continuum of excitations, centered around 35meV and extending up to 100meV. This high-energy continuum survives up to at least 300K -- well above the ordering temperature of 38K -- and gives evidence for pairs of long-lived Majorana fermions of the proximate Kitaev spin liquid.
We studied the effect of external pressure on the electrodynamic properties of $alpha$-Li$_2$IrO$_3$ single crystals in the frequency range of the phonon modes and the Ir $d$-$d$ transitions. The abrupt hardening of several phonon modes under pressur e supports the onset of the dimerized phase at the critical pressure $P_c$=3.8 GPa. With increasing pressure an overall decrease in spectral weight of the Ir $d$-$d$ transitions is found up to $P_c$. Above $P_c$, the local (on-site) $d$-$d$ excitations gain spectral weight with increasing pressure, which hints at a pressure-induced increase in the octahedral distortions. The non-local (intersite) Ir $d$-$d$ transitions show a monotonic blue-shift and decrease in spectral weight. The changes observed for the non-local excitations are most prominent well above $P_c$, namely for pressures $geq$12 GPa, and only small changes occur for pressures close to $P_c$. The profile of the optical conductivity at high pressures ($sim$20 GPa) appears to be indicative for the dimerized state in iridates.
We report the existence of a phase transition at high temperature in the 3D Kitaev candidate material, $beta$-Li$_2$IrO$_3$. We show that the transition is bulk, intrinsic and orders a tiny magnetic moment with a spatially anisotropic saturation mome nt. We show that even though this transition is global, it does not freeze the local Ir moments, which order at much lower temperatures into an incommensurate state. Rather, the ordered moment has an orbital origin that is coupled to spin correlations, likely of a Kitaev origin. The separate ordering of spin-correlated orbital moments and of local Ir moments reveals a novel way in which magnetic frustration in Kitaev systems can lead to coexisting magnetic states.
A pressure-induced collapse of magnetic ordering in $beta$-Li$_2$IrO$_3$ at $P_msim1.5- 2$ GPa has previously been interpreted as evidence for possible emergence of spin liquid states in this hyperhoneycomb iridate, raising prospects for experimental realizations of the Kitaev model. Based on structural data obtained at emph{room temperature}, this magnetic transition is believed to originate in small lattice perturbations that preserve crystal symmetry, and related changes in bond-directional anisotropic exchange interactions. Here we report on the evolution of the crystal structure of $beta$-Li$_2$IrO$_3$ under pressure at low temperatures ($Tleq50$ K) and show that the suppression of magnetism coincides with a change in lattice symmetry involving Ir-Ir dimerization. The critical pressure for dimerization shifts from 4.4(2) GPa at room temperature to $sim1.5-2$ GPa below 50 K. While a direct $Fddd rightarrow C2/c$ transition is observed at room temperature, the low temperature transitions involve new as well as coexisting dimerized phases. Further investigation of the Ir ($L_3$/$L_2$) isotropic branching ratio in x-ray absorption spectra indicates that the previously reported departure of the electronic ground state from a $J_{rm{eff}}=1/2$ state is closely related to the onset of dimerized phases. In essence, our results suggest that the predominant mechanism driving the collapse of magnetism in $beta$-Li$_2$IrO$_3$ is the pressure-induced formation of Ir$_2$ dimers in the hyperhoneycomb network. The results further confirm the instability of the $J_{rm{eff}}=1/2$ moments and related non-collinear spiral magnetic ordering against formation of dimers in the low-temperature phase of compressed $beta$-Li$_2$IrO$_3$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا