ترغب بنشر مسار تعليمي؟ اضغط هنا

The transmission spectrum of WASP-17 b from the optical to the near-infrared wavelengths: combining STIS, WFC3 and IRAC datasets

127   0   0.0 ( 0 )
 نشر من قبل Arianna Saba
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the transmission spectrum of the inflated hot-Jupiter WASP-17 b, observed with the STIS (grisms G430L, G750L) and WFC3 (grisms G102, G141) instruments aboard the Hubble Space Telescope, allowing for a continuous wavelength coverage from $sim$0.4 to $sim$1.7 $mu$m. Available observations taken with IRAC channel 1 and 2 on the Spitzer Space Telescope are also included, adding photometric measurements at 3.6 and 4.5 $mu$m. HST spectral data was analysed with the open-source pipeline Iraclis, which is specialised on the reduction of STIS and WFC3 transit and eclipse observations. Spitzer photometric observations were reduced with the TLCD-LSTM (Transit Light Curve Detrending LSTM) method, which employs recurrent neural networks to predict the correlated noise and detrend Spitzer transit lightcurves. The outcome of our reduction produces incompatible results between STIS visit 1 and visit 2, which leads us to consider two scenarios for G430L. Additionally, by modelling the WFC3 data alone, we can extract atmospheric information without having to deal with the contrasting STIS datasets. We run separate retrievals on the three spectral scenarios with the aid of TauREx3, a fully Bayesian retrieval framework. We find that, independently of the data considered, the exoplanet atmosphere displays strong water signatures, aluminium oxide (AlO) and titanium hydride (TiH). A retrieval that includes an extreme photospheric activity of the host star is the preferred model, but we recognise that such scenario is unlikely for an F6-type star. Due to the incompleteness of all STIS spectral lightcurves, only further observations with this instrument would allow us to properly constrain the atmospheric limb of WASP-17 b, before JWST or Ariel will come online.



قيم البحث

اقرأ أيضاً

We present an atmospheric transmission spectrum of the ultra-hot Jupiter WASP-76 b by analyzing archival data obtained with the Space Telescope Imaging Spectrograph (STIS) on board the Hubble Space Telescope (HST). The dataset spans three transits, t wo with a wavelength coverage between 2900 and 5700 Armstrong, and the third one between 5250 and 10300 Armstrong. From the one-dimensional, time dependent spectra we constructed white and chromatic light curves, the latter with typical integration band widths of ~200 Armstrong. We computed the wavelength dependent planet-to-star radii ratios taking into consideration WASP-76s companion. The resulting transmission spectrum of WASP-76 b is dominated by a spectral slope of increasing opacity towards shorter wavelengths of amplitude of about three scale heights under the assumption of planetary equilibrium temperature. If the slope is caused by Rayleigh scattering, we derive a lower limit to the temperature of ~870 K. Following-up on previous detection of atomic sodium derived from high resolution spectra, we re-analyzed HST data using narrower bands centered around sodium. From an atmospheric retrieval of this transmission spectrum, we report evidence of sodium at 2.9-sigma significance. In this case, the retrieved temperature at the top of the atmosphere (10-5 bar) is 2300 +412-392 K. We also find marginal evidence for titanium hydride. However, additional high resolution ground-based data are required to confirm this discovery.
We present TransitFit, an open-source Python~3 package designed to fit exoplanetary transit light-curves for transmission spectroscopy studies (Available at https://github.com/joshjchayes/TransitFit and https://github.com/spearnet/TransitFit, with do cumentation at https://transitfit.readthedocs.io/). TransitFit employs nested sampling to offer efficient and robust multi-epoch, multi-wavelength fitting of transit data obtained from one or more telescopes. TransitFit allows per-telescope detrending to be performed simultaneously with parameter fitting, including the use of user-supplied detrending alogorithms. Host limb darkening can be fitted either independently (uncoupled) for each filter or combined (coupled) using prior conditioning from the PHOENIX stellar atmosphere models. For this TransitFit uses the Limb Darkening Toolkit (LDTk) together with filter profiles, including user-supplied filter profiles. We demonstrate the application of TransitFit in three different contexts. First, we model SPEARNET broadband optical data of the low-density hot-Neptune WASP-127~b. The data were obtained from a globally-distributed network of 0.5m--2.4m telescopes. We find clear improvement in our broadband results using the coupled mode over uncoupled mode, when compared against the higher spectral resolution GTC/OSIRIS transmission spectrum obtained by Chen et al. (2018). Using TransitFit, we fit 26 transit observations by TESS to recover improved ephemerides of the hot-Jupiter WASP-91~b and a transit depth determined to a precision of 170~ppm. Finally, we use TransitFit to conduct an investigation into the contested presence of TTV signatures in WASP-126~b using 126 transits observed by TESS, concluding that there is no statistically significant evidence for such signatures from observations spanning 31 TESS sectors.
We report here the analysis of the near-infrared transit spectrum of the hot-Jupiter HAT-P-32b which was recorded with the Wide Field Camera 3 (WFC3) on-board the Hubble Space Telescope (HST). HAT-P-32b is one of the most inflated exoplanets discover ed, making it an excellent candidate for transit spectroscopic measurements. To obtain the transit spectrum, we have adopted different analysis methods, both parametric and non parametric (Independent Component Analysis, ICA), and compared the results. The final spectra are all consistent within 0.5$sigma$. The uncertainties obtained with ICA are larger than those obtained with the parametric method by a factor $sim$1.6 - 1.8. This difference is the trade-off for higher objectivity due to the lack of any assumption about the instrument systematics compared to the parametric approach. The ICA error-bars are therefore worst-case estimates. To interpret the spectrum of HAT-P-32b, we used T-Rex, our fully Bayesian spectral retrieval code. As for other hot-Jupiters, the results are consistent with the presence of water vapor ($log{text{H}_2text{O}} = -3.45_{-1.65}^{+1.83}$), clouds (top pressure between 5.16 and 1.73 bar). Spectroscopic data over a broader wavelength range will be needed to de-correlate the mixing ratio of water vapor from clouds and identify other possible molecular species in the atmosphere of HAT-P-32b.
The hot Jupiter WASP-79b is a prime target for exoplanet atmospheric characterization both now and in the future. Here we present a thermal emission spectrum of WASP-79b, obtained via Hubble Space Telescope Wide Field Camera 3 G141 observations as pa rt of the PanCET program. Given the temporal coverage of WASP-79bs secondary eclipse, we consider two scenarios: a fixed mid-eclipse time based on the expected occurrence time and a mid-eclipse time as a free parameter. In both scenarios, we can measure thermal emission from WASP-79b from 1.1-1.7 $mu$m at 2.4$sigma$ confidence consistent with a 1900 K brightness temperature for the planet. We combine our observations with Spitzer dayside photometry (3.6 and 4.5 $mu$m) and compare these observations to a grid of atmospheric forward models. Given the precision of our measurements, WASP-79bs infrared emission spectrum is consistent with theoretical spectra assuming equilibrium chemistry, enhanced abundances of H-, VO, or FeH, as well as clouds. The best match equilibrium model suggests WASP-79bs dayside has a solar metallicity and carbon-to-oxygen ratio, alongside a recirculation factor of 0.75. Models including significant H- opacity provide the best match to WASP-79bs emission spectrum near 1.58 $mu$m. However, models featuring high-temperature cloud species - formed via vigorous vertical mixing and low sedimentation efficiencies - with little day-to-night energy transport also match WASP-79bs emission spectrum. Given the broad range of equilibrium chemistry, disequilibrium chemistry, and cloudy atmospheric models consistent with our observations of WASP-79bs dayside emission, further observations will be necessary to constrain WASP-79bs dayside atmospheric properties.
We observed the 2019 January total lunar eclipse with the Hubble Space Telescopes STIS spectrograph to obtain the first near-UV (1700-3200 $r{A}$) observation of Earth as a transiting exoplanet. The observatories and instruments that will be able to perform transmission spectroscopy of exo-Earths are beginning to be planned, and characterizing the transmission spectrum of Earth is vital to ensuring that key spectral features (e.g., ozone, or O$_3$) are appropriately captured in mission concept studies. O$_3$ is photochemically produced from O$_2$, a product of the dominant metabolism on Earth today, and it will be sought in future observations as critical evidence for life on exoplanets. Ground-based observations of lunar eclipses have provided the Earths transmission spectrum at optical and near-IR wavelengths, but the strongest O$_3$ signatures are in the near-UV. We describe the observations and methods used to extract a transmission spectrum from Hubble lunar eclipse spectra, and identify spectral features of O$_3$ and Rayleigh scattering in the 3000-5500 r{A} region in Earths transmission spectrum by comparing to Earth models that include refraction effects in the terrestrial atmosphere during a lunar eclipse. Our near-UV spectra are featureless, a consequence of missing the narrow time span during the eclipse when near-UV sunlight is not completely attenuated through Earths atmosphere due to extremely strong O$_3$ absorption and when sunlight is transmitted to the lunar surface at altitudes where it passes through the O$_3$ layer rather than above it.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا