ترغب بنشر مسار تعليمي؟ اضغط هنا

The Emission Spectrum of the Hot Jupiter WASP-79b from HST/WFC3

262   0   0.0 ( 0 )
 نشر من قبل Trevor Foote
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The hot Jupiter WASP-79b is a prime target for exoplanet atmospheric characterization both now and in the future. Here we present a thermal emission spectrum of WASP-79b, obtained via Hubble Space Telescope Wide Field Camera 3 G141 observations as part of the PanCET program. Given the temporal coverage of WASP-79bs secondary eclipse, we consider two scenarios: a fixed mid-eclipse time based on the expected occurrence time and a mid-eclipse time as a free parameter. In both scenarios, we can measure thermal emission from WASP-79b from 1.1-1.7 $mu$m at 2.4$sigma$ confidence consistent with a 1900 K brightness temperature for the planet. We combine our observations with Spitzer dayside photometry (3.6 and 4.5 $mu$m) and compare these observations to a grid of atmospheric forward models. Given the precision of our measurements, WASP-79bs infrared emission spectrum is consistent with theoretical spectra assuming equilibrium chemistry, enhanced abundances of H-, VO, or FeH, as well as clouds. The best match equilibrium model suggests WASP-79bs dayside has a solar metallicity and carbon-to-oxygen ratio, alongside a recirculation factor of 0.75. Models including significant H- opacity provide the best match to WASP-79bs emission spectrum near 1.58 $mu$m. However, models featuring high-temperature cloud species - formed via vigorous vertical mixing and low sedimentation efficiencies - with little day-to-night energy transport also match WASP-79bs emission spectrum. Given the broad range of equilibrium chemistry, disequilibrium chemistry, and cloudy atmospheric models consistent with our observations of WASP-79bs dayside emission, further observations will be necessary to constrain WASP-79bs dayside atmospheric properties.


قيم البحث

اقرأ أيضاً

We present a new optical transmission spectrum of the hot Jupiter WASP-79b. We observed three transits with the STIS instrument mounted on HST, spanning 0.3 - 1.0 um. Combining these transits with previous observations, we construct a complete 0.3 - 5.0 um transmission spectrum of WASP-79b. Both HST and ground-based observations show decreasing transit depths towards blue wavelengths, contrary to expectations from Rayleigh scattering or hazes. We infer atmospheric and stellar properties from the full near-UV to infrared transmission spectrum of WASP-79b using three independent retrieval codes, all of which yield consistent results. Our retrievals confirm previous detections of H$_{2}$O (at 4.0$sigma$ confidence), while providing moderate evidence of H$^{-}$ bound-free opacity (3.3$sigma$) and strong evidence of stellar contamination from unocculted faculae (4.7$sigma$). The retrieved H$_{2}$O abundance ($sim$ 1$%$) suggests a super-stellar atmospheric metallicity, though stellar or sub-stellar abundances remain consistent with present observations (O/H = 0.3 - 34$times$ stellar). All three retrieval codes obtain a precise H$^{-}$ abundance constraint: log(X$_{rm{H^{-}}}$) $approx$ -8.0 $pm$ 0.7. The potential presence of H$^{-}$ suggests that JWST observations may be sensitive to ionic chemistry in the atmosphere of WASP-79b. The inferred faculae are $sim$ 500 K hotter than the stellar photosphere, covering $sim$ 15$%$ of the stellar surface. Our analysis underscores the importance of observing UV - optical transmission spectra in order to disentangle the influence of unocculted stellar heterogeneities from planetary transmission spectra.
We present an atmospheric transmission spectrum of the ultra-hot Jupiter WASP-76 b by analyzing archival data obtained with the Space Telescope Imaging Spectrograph (STIS) on board the Hubble Space Telescope (HST). The dataset spans three transits, t wo with a wavelength coverage between 2900 and 5700 Armstrong, and the third one between 5250 and 10300 Armstrong. From the one-dimensional, time dependent spectra we constructed white and chromatic light curves, the latter with typical integration band widths of ~200 Armstrong. We computed the wavelength dependent planet-to-star radii ratios taking into consideration WASP-76s companion. The resulting transmission spectrum of WASP-76 b is dominated by a spectral slope of increasing opacity towards shorter wavelengths of amplitude of about three scale heights under the assumption of planetary equilibrium temperature. If the slope is caused by Rayleigh scattering, we derive a lower limit to the temperature of ~870 K. Following-up on previous detection of atomic sodium derived from high resolution spectra, we re-analyzed HST data using narrower bands centered around sodium. From an atmospheric retrieval of this transmission spectrum, we report evidence of sodium at 2.9-sigma significance. In this case, the retrieved temperature at the top of the atmosphere (10-5 bar) is 2300 +412-392 K. We also find marginal evidence for titanium hydride. However, additional high resolution ground-based data are required to confirm this discovery.
We analyse emission spectra of WASP-12b from a partial phase curve observed over three epochs with the Hubble Space Telescope, covering eclipse, quadrature, and transit, respectively. As the 1.1-day period phase curve was only partially covered over three epochs, traditional methods to extract the planet flux and instrument systematic errors cannot recover the thermal emission away from the secondary eclipse. To analyse this partial phase curve, we introduce a new method, which corrects for the wavelength-independent component of the systematic errors. Our new method removes the achromatic instrument and stellar variability, and uses the measured stellar spectrum in eclipse to then retrieve a relative planetary spectrum in wavelength at each phase. We are able to extract the emission spectrum of an exoplanet at quadrature outside of a phase curve for the first time; we recover the quadrature spectrum of WASP-12b up to an additive constant. The dayside emission spectrum is extracted in a similar manner, and in both cases we are able to estimate the brightness temperature, albeit at a greatly reduced precision. We estimate the brightness temperature from the dayside (Tday=3186+-677 K) and from the quadrature spectrum (Tquad=2124+-417 K) and combine them to constrain the energy budget of the planet. We compare our extracted relative spectra to global circulation models of this planet, which are generally found to be a good match. However, we do see tentative evidence of a steeper spectral slope in the measured dayside spectrum compared to our models. We find that we cannot match this increased slope by increasing optical opacities in our models. We also find that this spectral slope is unlikely to be explained by a non-equilibrium water abundance, as water advected from the nightside is quickly dissociated on the dayside.
We present the optical transmission spectrum of the hot Jupiter WASP-104b based on one transit observed by the blue and red channels of the DBSP spectrograph at the Palomar 200-inch telescope and 14 transits observed by the MuSCAT2 four-channel image r at the 1.52 m Telescopio Carlos Sanchez. We also analyse 45 additional K2 transits, after correcting for the flux contamination from a companion star. Together with the transit light curves acquired by DBSP and MuSCAT2, we are able to revise the system parameters and orbital ephemeris, confirming that no transit timing variations exist. Our DBSP and MuSCAT2 combined transmission spectrum reveals an enhanced slope at wavelengths shorter than 630 nm and suggests the presence of a cloud deck at longer wavelengths. While the Bayesian spectral retrieval analyses favour a hazy atmosphere, stellar spot contamination cannot be completely ruled out. Further evidence, from transmission spectroscopy and detailed characterisation of the host stars activity, is required to distinguish the physical origin of the enhanced slope.
We report three newly discovered exoplanets from the SuperWASP survey. WASP-127b is a heavily inflated super-Neptune of mass 0.18 +/- 0.02 M_J and radius 1.37 +/- 0.04 R_J. This is one of the least massive planets discovered by the WASP project. It o rbits a bright host star (Vmag = 10.16) of spectral type G5 with a period of 4.17 days. WASP-127b is a low-density planet that has an extended atmosphere with a scale height of 2500 +/- 400 km, making it an ideal candidate for transmission spectroscopy. WASP-136b and WASP-138b are both hot Jupiters with mass and radii of 1.51 +/- 0.08 M_J and 1.38 +/- 0.16 R_J, and 1.22 +/- 0.08 M_J and 1.09 +/- 0.05 R_J, respectively. WASP-136b is in a 5.22-day orbit around an F9 subgiant star with a mass of 1.41 +/- 0.07 M_sun and a radius of 2.21 +/- 0.22 R_sun. The discovery of WASP-136b could help constrain the characteristics of the giant planet population around evolved stars. WASP-138b orbits an F7 star with a period of 3.63 days. Its radius agrees with theoretical values from standard models, suggesting the presence of a heavy element core with a mass of ~10 M_earth. The discovery of these new planets helps in exploring the diverse compositional range of short-period planets, and will aid our understanding of the physical characteristics of both gas giants and low-density planets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا