ﻻ يوجد ملخص باللغة العربية
The Sasa-Satsuma equation with $3 times 3 $ Lax representation is one of the integrable extensions of the nonlinear Schr{o}dinger equation. In this paper, we consider the Cauchy problem of the Sasa-Satsuma equation with generic decaying initial data. Based on the Rieamnn-Hilbert problem characterization for the Cauchy problem and the $overline{partial}$-nonlinear steepest descent method, we find qualitatively different long time asymptotic forms for the Sasa-Satsuma equation in three solitonic space-time regions: (1) For the region $x<0, |x/t|=mathcal{O}(1)$, the long time asymptotic is given by $$q(x,t)=u_{sol}(x,t| sigma_{d}(mathcal{I})) + t^{-1/2} h + mathcal{O} (t^{-3/4}). $$ in which the leading term is $N(I)$ solitons, the second term the second $t^{-1/2}$ order term is soliton-radiation interactions and the third term is a residual error from a $overlinepartial$ equation. (2) For the region $ x>0, |x/t|=mathcal{O}(1)$, the long time asymptotic is given by $$ u(x,t)= u_{sol}(x,t| sigma_{d}(mathcal{I})) + mathcal{O}(t^{-1}).$$ in which the leading term is $N(I)$ solitons, the second term is a residual error from a $overlinepartial$ equation. (3) For the region $ |x/t^{1/3}|=mathcal{O}(1)$, the Painleve asymptotic is found by $$ u(x,t)= frac{1}{t^{1/3}} u_{P} left(frac{x}{t^{1/3}} right) + mathcal{O} left(t^{2/(3p)-1/2} right), qquad 4<p < infty.$$ in which the leading term is a solution to a modified Painleve $mathrm{II}$ equation, the second term is a residual error from a $overlinepartial$ equation.
We investigate the long time asymptotics for the Cauchy problem of the defocusing modified Kortweg-de Vries (mKdV) equation with finite density initial data in different solitonic regions begin{align*} &q_t(x,t)-6q^2(x,t)q_{x}(x,t)+q_{xxx}(x,t)=0,
We consider the initial-value problem for the Sasa-Satsuma equation on the line with decaying initial data. Using a Riemann-Hilbert formulation and steepest descent arguments, we compute the long-time asymptotics of the solution in the sector $|x| le
The long-time asymptotic behavior of solutions to the focusing nonlinear Schrodinger (NLS) equation on the line with symmetric, nonzero boundary conditions at infinity is studied in the case of initial conditions that allow for the presence of discre
We consider the initial-value problem for the ``good Boussinesq equation on the line. Using inverse scattering techniques, the solution can be expressed in terms of the solution of a $3 times 3$-matrix Riemann-Hilbert problem. We establish formulas f
In this paper, we study the long-time dynamics and stability properties of the sine-Gordon equation $$f_{tt}-f_{xx}+sin f=0.$$ Firstly, we use the nonlinear steepest descent for Riemann-Hilbert problems to compute the long-time asymptotics of the sol