ترغب بنشر مسار تعليمي؟ اضغط هنا

Long-time Asymptotics for the Focusing Nonlinear Schrodinger Equation with Nonzero Boundary Conditions in the Presence of a Discrete Spectrum

169   0   0.0 ( 0 )
 نشر من قبل Dionyssios Mantzavinos
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The long-time asymptotic behavior of solutions to the focusing nonlinear Schrodinger (NLS) equation on the line with symmetric, nonzero boundary conditions at infinity is studied in the case of initial conditions that allow for the presence of discrete spectrum. The results of the analysis provide the first rigorous characterization of the nonlinear interactions between solitons and the coherent oscillating structures produced by localized perturbations in a modulationally unstable medium. The study makes crucial use of the inverse scattering transform for the focusing NLS equation with nonzero boundary conditions, as well as of the nonlinear steepest descent method of Deift and Zhou for oscillatory Riemann-Hilbert problems. Previously, it was shown that in the absence of discrete spectrum the $xt$-plane decomposes asymptotically in time into two types of regions: a left far-field region and a right far-field region, where to leading order the solution equals the condition at infinity up to a phase shift, and a central region where the asymptotic behavior is described by slowly modulated periodic oscillations. Here, it is shown that in the presence of a conjugate pair of discrete eigenvalues in the spectrum a similar coherent oscillatory structure emerges but, in addition, three different interaction outcomes can arise depending on the precise location of the eigenvalues: (i) soliton transmission, (ii) soliton trapping, and (iii) a mixed regime in which the soliton transmission or trapping is accompanied by the formation of an additional, nondispersive localized structure akin to a soliton-generated wake. The soliton-induced position and phase shifts of the oscillatory structure are computed, and the analytical results are validated by a set of accurate numerical simulations.



قيم البحث

اقرأ أيضاً

The long-time asymptotic behavior of the focusing nonlinear Schrodinger (NLS) equation on the line with symmetric nonzero boundary conditions at infinity is characterized by using the recently developed inverse scattering transform (IST) for such pro blems and by employing the nonlinear steepest descent method of Deift and Zhou for oscillatory Riemann-Hilbert problems. First, the IST is formulated over a single sheet of the complex plane without introducing a uniformization variable. The solution of the focusing NLS equation with nonzero boundary conditions is thus associated with a suitable matrix Riemann-Hilbert problem whose jumps grow exponentially with time for certain portions of the continuous spectrum. This growth is the signature of the well-known modulational instability within the context of the IST. This growth is then removed by suitable deformations of the Riemann-Hilbert problem in the complex spectral plane. Asymptotically in time, the $xt$-plane is found to decompose into two types of regions: a left far-field region and a right far-field region, where the solution equals the condition at infinity to leading order up to a phase shift, and a central region in which the asymptotic behavior is described by slowly modulated periodic oscillations. In the latter region, it is also shown that the modulus of the leading order solution, which is initially obtained in the form of a ratio of Jacobi theta functions, eventually reduces to the well-known elliptic solution of the focusing NLS equation. These results provide the first characterization of the long-time behavior of generic perturbations of a constant background in a modulationally unstable medium.
329 - Remi Carles 2009
We consider the propagation of wave packets for the nonlinear Schrodinger equation, in the semi-classical limit. We establish the existence of a critical size for the initial data, in terms of the Planck constant: if the initial data are too small, t he nonlinearity is negligible up to the Ehrenfest time. If the initial data have the critical size, then at leading order the wave function propagates like a coherent state whose envelope is given by a nonlinear equation, up to a time of the same order as the Ehrenfest time. We also prove a nonlinear superposition principle for these nonlinear wave packets.
397 - Weikang Xun , Engui Fan 2021
The Sasa-Satsuma equation with $3 times 3 $ Lax representation is one of the integrable extensions of the nonlinear Schr{o}dinger equation. In this paper, we consider the Cauchy problem of the Sasa-Satsuma equation with generic decaying initial data. Based on the Rieamnn-Hilbert problem characterization for the Cauchy problem and the $overline{partial}$-nonlinear steepest descent method, we find qualitatively different long time asymptotic forms for the Sasa-Satsuma equation in three solitonic space-time regions: (1) For the region $x<0, |x/t|=mathcal{O}(1)$, the long time asymptotic is given by $$q(x,t)=u_{sol}(x,t| sigma_{d}(mathcal{I})) + t^{-1/2} h + mathcal{O} (t^{-3/4}). $$ in which the leading term is $N(I)$ solitons, the second term the second $t^{-1/2}$ order term is soliton-radiation interactions and the third term is a residual error from a $overlinepartial$ equation. (2) For the region $ x>0, |x/t|=mathcal{O}(1)$, the long time asymptotic is given by $$ u(x,t)= u_{sol}(x,t| sigma_{d}(mathcal{I})) + mathcal{O}(t^{-1}).$$ in which the leading term is $N(I)$ solitons, the second term is a residual error from a $overlinepartial$ equation. (3) For the region $ |x/t^{1/3}|=mathcal{O}(1)$, the Painleve asymptotic is found by $$ u(x,t)= frac{1}{t^{1/3}} u_{P} left(frac{x}{t^{1/3}} right) + mathcal{O} left(t^{2/(3p)-1/2} right), qquad 4<p < infty.$$ in which the leading term is a solution to a modified Painleve $mathrm{II}$ equation, the second term is a residual error from a $overlinepartial$ equation.
We investigate the long time asymptotics for the Cauchy problem of the defocusing modified Kortweg-de Vries (mKdV) equation with finite density initial data in different solitonic regions begin{align*} &q_t(x,t)-6q^2(x,t)q_{x}(x,t)+q_{xxx}(x,t)=0, quad (x,t)inmathbb{R}times mathbb{R}^{+}, &q(x,0)=q_{0}(x), quad lim_{xrightarrowpminfty}q_{0}(x)=pm 1, end{align*} where $q_0mp 1in H^{4,4}(mathbb{R})$.Based on the spectral analysis of the Lax pair, we express the solution of the mKdV equation in terms of a Riemann-Hilbert problem. In our previous article, we have obtained long time asymptotics and soliton resolutions for the mKdV equation in the solitonic region $xiin(-6,-2)$ with $xi=frac{x}{t}$.In this paper, we calculate the asymptotic expansion of the solution $q(x,t)$ for the solitonic region $xiin(-varpi,-6)cup(-2,varpi)$ with $ 6 < varpi<infty$ being an arbitrary constant.For $-varpi<xi<-6$, there exist four stationary phase points on jump contour, and the asymptotic approximations can be characterized with an $N$-soliton on discrete spectrums and a leading order term $mathcal{O}(t^{-1/2})$ on continuous spectrum up to a residual error order $mathcal{O}(t^{-3/4})$. For $-2<xi<varpi$, the leading term of asymptotic expansion is described by the soliton solution and the error order $mathcal{O}(t^{-1})$ comes from a $bar{partial}$-problem. Additionally, asymptotic stability can be obtained.
The Riemann-Hilbert (RH) problem is first developed to study the focusing nonlinear Schr{o}dinger (NLS) equation with multiple high-order poles under nonzero boundary conditions. Laurent expansion and Taylor series are employed to replace the residue s at the simple- and the second-poles. Further, the solution of RH problem is transformed into a closed system of algebraic equations, and the soliton solutions corresponding to the transmission coefficient $1/s_{11}(z)$ with an $N$-order pole are obtained by solving the algebraic system. Then, in a more general case, the transmission coefficient with multiple high-order poles is studied, and the corresponding solutions are obtained. In addition, for high-order pole, the propagation behavior of the soliton solution corresponding to a third-order pole is given as example.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا