ترغب بنشر مسار تعليمي؟ اضغط هنا

MOJAVE: XVIII. Kinematics and Inner Jet Evolution of Bright Radio-Loud Active Galaxies

85   0   0.0 ( 0 )
 نشر من قبل Yuri Kovalev
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف M. L. Lister




اسأل ChatGPT حول البحث

We have analyzed the parsec-scale jet kinematics of 447 bright radio-loud AGN, based on 15 GHz VLBA data obtained between 1994 August 31 and 2019 August 4. We present new total intensity and linear polarization maps obtained between 2017 January 1 to 2019 August 4 for 143 of these AGN. We tracked 1923 bright features for five or more epochs in 419 jets. A majority (60%) of the well-sampled jet features show either accelerated or non-radial motion. In 47 jets there is at least one non-accelerating feature with an unusually slow apparent speed. Most of the jets show variations of 10 to 50 deg in their inner jet position angle (PA) over time, although the overall distribution has a continuous tail out to 200 deg. AGN with SEDs peaked at lower frequencies tend to have more variable PAs, with BL Lacs being less variable than quasars. The Fermi LAT gamma-ray associated AGN also tend to have more variable PAs than the non-LAT AGN in our sample. We attribute these trends to smaller viewing angles for the lower spectral peaked and LAT-associated jets. We identified 13 AGN where multiple features emerge over decade-long periods at systematically increasing or decreasing PAs. Since the ejected features do not fill the entire jet cross-section, this behavior is indicative of a precessing flow instability near the jet base. Although some jets show indications of oscillatory PA evolution, we claim no bona fide cases of periodicity since the fitted periods are comparable to the total VLBA time coverage.

قيم البحث

اقرأ أيضاً

We present results from a parsec-scale jet kinematics study of 409 bright radio-loud AGNs based on 15 GHz VLBA data obtained between 1994 August 31 and 2016 December 26 as part of the 2cm VLBA survey and MOJAVE programs. We tracked 1744 individual br ight features in 382 jets over at least five epochs. A majority (59%) of the best-sampled jet features showed evidence of accelerated motion at the >3sigma level. Although most features within a jet typically have speeds within ~40% of a characteristic median value, we identified 55 features in 42 jets that had unusually slow pattern speeds, nearly all of which lie within 4 pc (100 pc de-projected) of the core feature. Our results combined with other speeds from the literature indicate a strong correlation between apparent jet speed and synchrotron peak frequency, with the highest jet speeds being found only in low-peaked AGNs. Using Monte Carlo simulations, we find best fit parent population parameters for a complete sample of 174 quasars above 1.5 Jy at 15 GHz. Acceptable fits are found with a jet population that has a simple unbeamed power law luminosity function incorporating pure luminosity evolution, and a power law Lorentz factor distribution ranging from 1.25 to 50 with slope -1.4 +- 0.2. The parent jets of the brightest radio quasars have a space density of 261 +- 19 Gpc$^{-3}$ and unbeamed 15 GHz luminosities above ~$10^{24.5}$ W/Hz, consistent with FR II class radio galaxies.
71 - Zhen-Yi Cai 2018
Jet launching in radio loud (RL) quasars is one of the fundamental problems in astrophysics. Exploring the differences in the inner accretion disk properties between RL and radio quiet (RQ) quasars might yield helpful clues to this puzzle. We previou sly discovered that the shorter term UV/optical variations of quasars are bluer than the longer term ones, i.e., the so-called timescale-dependent color variation. This is consistent with the scheme that the faster variations come from the inner and hotter disk regions, thus providing a useful tool to map the accretion disk which is otherwise unresolvable. In this work we compare the UV/optical variations of RL quasars in SDSS Stripe 82 to those of several RQ samples, including those matched in redshift-luminosity-black hole mass and/or color-magnitude. We find that while both RL and RQ populations appear bluer when they brighten, RL quasars potentially show a weaker/flatter dependence on timescale in their color variation. We further find that while both RL and RQ populations on average show similar variation amplitudes at long timescales, fast variations of RL sources appear weaker/smaller (at timescales of ~ 25 -- 300 days in the observers frame), and the difference is more prominent in the g-band than in the r-band. Inhomogeneous disk simulations can qualitatively reproduce these observed differences if the inner accretion disk of RL quasars fluctuates less based on simple toy models. Though the implications are likely model dependent, the discovery points to an interesting diagram that magnetic fields in RL quasars may be prospectively stronger and play a key role in both jet launching and the stabilization of the inner accretion disk.
Observational information on high-energy astrophysical neutrinos is being continuously collected by the IceCube observatory. However, the sources of neutrinos are still unknown. In this study, we use radio very-long-baseline interferometry (VLBI) dat a for a complete VLBI-flux-density limited sample of active galactic nuclei (AGN). We address the problem of the origin of astrophysical neutrinos with energies above 200 TeV in a statistical manner. It is found that AGN positionally associated with IceCube events have typically stronger parsec-scale cores than the rest of the sample. The post-trial probability of a chance coincidence is 0.2%. We select the four strongest AGN as highly probable associations: 3C 279, NRAO 530, PKS 1741-038, and PKS 2145+067. Moreover, we find an increase of radio emission at frequencies above 10 GHz around neutrino arrival times for several other VLBI-selected AGN on the basis of RATAN-600 monitoring. The most pronounced example of such behavior is PKS 1502+106. We conclude that AGN with bright Doppler-boosted jets constitute an important population of neutrino sources. High-energy neutrinos are produced in their central parsec-scale regions, probably in proton-photon interactions at or around the accretion disk. Radio-bright AGN that are likely associated with neutrinos have very diverse gamma-ray properties suggesting that gamma-rays and neutrinos may be produced in different regions of AGN and not directly related. A small viewing angle of the jet-disk axis is, however, required to detect either of them.
173 - S. F. Zhu , W. N. Brandt , B. Luo 2020
Radio-loud quasars (RLQs) are more X-ray luminous than predicted by the X-ray-optical/UV relation (i.e. $L_mathrm{x}propto L_mathrm{uv}^gamma$) for radio-quiet quasars (RQQs). The excess X-ray emission depends on the radio-loudness parameter ($R$) an d radio spectral slope ($alpha_mathrm{r}$). We construct a uniform sample of 729 optically selected RLQs with high fractions of X-ray detections and $alpha_mathrm{r}$ measurements.We find that steep-spectrum radio quasars (SSRQs; $alpha_mathrm{r}le-0.5$) follow a quantitatively similar $L_mathrm{x}propto L_mathrm{uv}^gamma$ relation as that for RQQs, suggesting a common coronal origin for the X-ray emission of both SSRQs and RQQs. However, the corresponding intercept of SSRQs is larger than that for RQQs and increases with $R$, suggesting a connection between the radio jets and the configuration of the accretion flow. Flat-spectrum radio quasars (FSRQs; $alpha_mathrm{r}>-0.5$) are generally more X-ray luminous than SSRQs at given $L_mathrm{uv}$ and $R$, likely involving more physical processes. The emergent picture is different from that commonly assumed where the excess X-ray emission of RLQs is attributed to the jets. We thus perform model selection to comparecritically these different interpretations, which prefers the coronal scenario with a corona-jet connection. A distinct jet component is likely important for only a small portion of FSRQs.The corona-jet, disk-corona, and disk-jet connections of RLQs are likely driven by independent physical processes. Furthermore, the corona-jet connection implies that small-scale processesin the vicinity of SMBHs, probably associated with the magnetic flux/topology instead of black-hole spin, are controlling the radio-loudness of quasars.
Gamma-ray bursts (GRBs) and GeV-TeV selected radio loud Active Galactic Nuclei (AGNs) are compared based on our systematic modeling of the observed spectral energy distributions of a sample of AGNs with a single-zone leptonic model. We show that the correlation between the jet power (P_{jet}) and the prompt gamma-ray luminosity (L_{jet}) of GRBs is consistent, within the uncertainties, with the correlation between jet power and the synchrotron peak luminosity (L_{s, jet}) of flat spectrum radio quasars (FSRQs). Their radiation efficiencies (varepsilon) are also comparable (>10% for most sources), which increase with the bolometric jet luminosity (L_{bol,jet}) for FSRQs and with the L_{jet} for GRBs with similar power-law indices. BL Lacs do not follow the P_{jet}-L_{s, jet} relation of FSRQs. They have lower varepsilon and L_{bol, jet} values than FSRQs, and a tentative L_{bol, jet}-varepsilon relation is also found, with a power-law index being different from that of the FSRQs. The magnetization parameters (sigma) of FSRQs are averagely larger than that of BL Lacs. They are anti-correlated with $varepsilon$ for the FSRQs, but positive correlated with varepsilon for the BL Lacs. GeV Narrow-line Seyfert 1 galaxies potentially share similar properties with FSRQs. Based on the analogy between GRBs and FSRQs, we suggest that the prompt gamma-ray emission of GRBs is likely produced by synchrotron process in a magnetized jet with high radiation efficiency, similar to FSRQs. The jets of BL Lacs, on the other hand, are less efficient and are likely more matter dominated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا