ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing the tau electric dipole moment at BEPC-II collider energies

131   0   0.0 ( 0 )
 نشر من قبل Werner Bernreuther
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the prospects of the search for a nonzero $tau$ EDM form factor $d_tau(s)$ in $tau$ pair production by $e^+ e^-$ collisions at BEPC-II collider energies. We compute the expectation values and covariances of simple and optimal $CP$-odd observables for $tau$-pair production at $sqrt{s}=4.18$ GeV and $4.95$ GeV with subsequent decays of $tau^pm$ into major leptonic or semihadronic modes. For the $tau$ decays to two pions and three charged pions we take the full kinematic information of the hadronic system into account. Applying cuts and using realistic assumptions on the eventually attainable integrated luminosities at these energies, ${cal L}(4.18) = 3times 10^4~{rm pb}^{-1}$ and ${cal L}(4.95) = 10^4~{rm pb}^{-1}$, respectively, we find the following. By taking into account purely semihadronic and semihadronic-leptonic $tau^+tau^-$ decays one can achieve with optimal $CP$-odd observables the 1 s.d. sensitivities $delta {rm Re} d_tau = 4.5times 10^{-18}$ ecm ($5.3times 10^{-18}$ ecm) and $delta {rm Im} d_tau = 2.2 times 10^{-18}$ ecm ($2.7times 10^{-18}$ ecm) at $sqrt{s}=4.18$ GeV ($4.95$ GeV).

قيم البحث

اقرأ أيضاً

The milliQan Collaboration has proposed to search for millicharged particles by looking for very weakly ionizing tracks in a detector installed in a cavern near the CMS experiment at the LHC. We note that another form of exotica can also yield weakly ionizing tracks. If a heavy neutrino has an electric dipole moment (EDM), then the milliQan experiment may be sensitive to it as well. In particular, writing the general dimension-5 operator for an EDM with a scale of a TeV and a one-loop factor, one finds a potential EDM as high as a few times $10^{-17}$ e-cm, and models exist where it is an order of magnitude higher. Redoing the Bethe calculation of ionization energy loss for an EDM, it is found that the milliQan detector is sensitive to EDMs as small as $10^{-17}$ e-cm. Using the production cross-section and analyzing the acceptance of the milliQan detector, we find the expected $95%$ exclusion and $3sigma$ sensitivity over the range of neutrino masses from $5-1000$ GeV for integrated luminosities of $300$ and $3000 {rm fb}^{-1}$ at the LHC.
This document contains a proposal of the BEPC-II collider beam energy calibration system (IHEP, Beijing). The system is based on Compton backscattering of carbon dioxide laser radiation, producing a beam of high energy photons. Their energy spectrum is then accurately measured by HPGe detector. The high-energy spectrum edge will allow to determine the average electron or positron beam energy with relative accuracy about 3x10^-5.
We extract the neutron electric dipole moment $vert vec{d}_Nvert$ within the lattice QCD formalism. We analyse one ensemble of $N_f=2+1+1$ twisted mass clover-improved fermions with lattice spacing of $a simeq 0.08 {rm fm}$ and physical values of th e quark masses corresponding to a pion mass $m_{pi} simeq 139 {rm MeV}$. The neutron electric dipole moment is extracted by computing the $CP$-odd electromagnetic form factor $F_3(Q^2 to 0)$ through small $theta$-expansion of the action. This approach requires the calculation of the topological charge for which we employ a fermionic definition by means of spectral projectors while we also provide a comparison with the gluonic definition accompanied by the gradient flow. We show that using the topological charge from spectral projectors leads to absolute errors that are more than two times smaller than those provided when the field theoretic definition is employed. We find a value of $vert vec{d}_Nvert = 0.0009(24) theta e cdot {rm fm}$ when using the fermionic definition, which is statistically consistent with zero.
The magnetic moment of the $tau$ lepton is an interesting quantity that is potentially sensitive to physics beyond the Standard Model. Electroweak gauge invariance implies that a heavy new physics contribution to it takes the form of an operator whic h involves the Higgs boson, implying that rare Higgs decays are able to probe the same physics as $a_tau$. We examine the prospects for rare Higgs decays at future high energy lepton (electron or muon) colliders, and find that such a project collecting a few ab$^{-1}$ would be able to advance our understanding of this physics by roughly a factor of 10 compared to the expected reach of the high luminosity LHC.
85 - Sibo Zheng 2019
In the context of supersymmetry, the two-loop Barr-Zee diagrams which induce CP-violating electric dipole moment of electron due to superpartners simultaneously yield CP-conserving magnetic dipole moment of muon. In this paper, we derive the coherenc e between the electric and magnetic dipole moments at two-loop level due to stops, charginos or neutralinos-charginos. We also use the coherence to constrain superpartner masses and their CP-violating phases, in the light of recent ACME limit on the electric dipole moment of electron and future experiments about magnetic dipole moment of muon such as Fermilab E989 experiment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا