ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning Meta Representations for Agents in Multi-Agent Reinforcement Learning

95   0   0.0 ( 0 )
 نشر من قبل Shenao Zhang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In multi-agent reinforcement learning, the behaviors that agents learn in a single Markov Game (MG) are typically confined to the given agent number (i.e., population size). Every single MG induced by varying population sizes may possess distinct optimal joint strategies and game-specific knowledge, which are modeled independently in modern multi-agent algorithms. In this work, we focus on creating agents that generalize across population-varying MGs. Instead of learning a unimodal policy, each agent learns a policy set that is formed by effective strategies across a variety of games. We propose Meta Representations for Agents (MRA) that explicitly models the game-common and game-specific strategic knowledge. By representing the policy sets with multi-modal latent policies, the common strategic knowledge and diverse strategic modes are discovered with an iterative optimization procedure. We prove that as an approximation to a constrained mutual information maximization objective, the learned policies can reach Nash Equilibrium in every evaluation MG under the assumption of Lipschitz game on a sufficiently large latent space. When deploying it at practical latent models with limited size, fast adaptation can be achieved by leveraging the first-order gradient information. Extensive experiments show the effectiveness of MRA on both training performance and generalization ability in hard and unseen games.

قيم البحث

اقرأ أيضاً

Object-centric representations have recently enabled significant progress in tackling relational reasoning tasks. By building a strong object-centric inductive bias into neural architectures, recent efforts have improved generalization and data effic iency of machine learning algorithms for these problems. One problem class involving relational reasoning that still remains under-explored is multi-agent reinforcement learning (MARL). Here we investigate whether object-centric representations are also beneficial in the fully cooperative MARL setting. Specifically, we study two ways of incorporating an agent-centric inductive bias into our RL algorithm: 1. Introducing an agent-centric attention module with explicit connections across agents 2. Adding an agent-centric unsupervised predictive objective (i.e. not using action labels), to be used as an auxiliary loss for MARL, or as the basis of a pre-training step. We evaluate these approaches on the Google Research Football environment as well as DeepMind Lab 2D. Empirically, agent-centric representation learning leads to the emergence of more complex cooperation strategies between agents as well as enhanced sample efficiency and generalization.
223 - Meng Zhou , Ziyu Liu , Pengwei Sui 2020
We present a multi-agent actor-critic method that aims to implicitly address the credit assignment problem under fully cooperative settings. Our key motivation is that credit assignment among agents may not require an explicit formulation as long as (1) the policy gradients derived from a centralized critic carry sufficient information for the decentralized agents to maximize their joint action value through optimal cooperation and (2) a sustained level of exploration is enforced throughout training. Under the centralized training with decentralized execution (CTDE) paradigm, we achieve the former by formulating the centralized critic as a hypernetwork such that a latent state representation is integrated into the policy gradients through its multiplicative association with the stochastic policies; to achieve the latter, we derive a simple technique called adaptive entropy regularization where magnitudes of the entropy gradients are dynamically rescaled based on the current policy stochasticity to encourage consistent levels of exploration. Our algorithm, referred to as LICA, is evaluated on several benchmarks including the multi-agent particle environments and a set of challenging StarCraft II micromanagement tasks, and we show that LICA significantly outperforms previous methods.
We study multi-agent reinforcement learning (MARL) in a time-varying network of agents. The objective is to find localized policies that maximize the (discounted) global reward. In general, scalability is a challenge in this setting because the size of the global state/action space can be exponential in the number of agents. Scalable algorithms are only known in cases where dependencies are static, fixed and local, e.g., between neighbors in a fixed, time-invariant underlying graph. In this work, we propose a Scalable Actor Critic framework that applies in settings where the dependencies can be non-local and time-varying, and provide a finite-time error bound that shows how the convergence rate depends on the speed of information spread in the network. Additionally, as a byproduct of our analysis, we obtain novel finite-time convergence results for a general stochastic approximation scheme and for temporal difference learning with state aggregation, which apply beyond the setting of RL in networked systems.
Breakthrough advances in reinforcement learning (RL) research have led to a surge in the development and application of RL. To support the field and its rapid growth, several frameworks have emerged that aim to help the community more easily build ef fective and scalable agents. However, very few of these frameworks exclusively support multi-agent RL (MARL), an increasingly active field in itself, concerned with decentralised decision-making problems. In this work, we attempt to fill this gap by presenting Mava: a research framework specifically designed for building scalable MARL systems. Mava provides useful components, abstractions, utilities and tools for MARL and allows for simple scaling for multi-process system training and execution, while providing a high level of flexibility and composability. Mava is built on top of DeepMinds Acme citep{hoffman2020acme}, and therefore integrates with, and greatly benefits from, a wide range of already existing single-agent RL components made available in Acme. Several MARL baseline systems have already been implemented in Mava. These implementations serve as examples showcasing Mavas reusable features, such as interchangeable system architectures, communication and mixing modules. Furthermore, these implementations allow existing MARL algorithms to be easily reproduced and extended. We provide experimental results for these implementations on a wide range of multi-agent environments and highlight the benefits of distributed system training.
102 - Yuanchao Xu , Amal Feriani , 2021
Multi-Agent Reinforcement Learning (MARL) is a challenging subarea of Reinforcement Learning due to the non-stationarity of the environments and the large dimensionality of the combined action space. Deep MARL algorithms have been applied to solve di fferent task offloading problems. However, in real-world applications, information required by the agents (i.e. rewards and states) are subject to noise and alterations. The stability and the robustness of deep MARL to practical challenges is still an open research problem. In this work, we apply state-of-the art MARL algorithms to solve task offloading with reward uncertainty. We show that perturbations in the reward signal can induce decrease in the performance compared to learning with perfect rewards. We expect this paper to stimulate more research in studying and addressing the practical challenges of deploying deep MARL solutions in wireless communications systems.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا