ترغب بنشر مسار تعليمي؟ اضغط هنا

Symmetry-protected quantization of complex Berry phases in non-Hermitian systems

115   0   0.0 ( 0 )
 نشر من قبل Hong Yang
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the quantization of the complex-valued Berry phases in non-Hermitian quantum systems with certain generalized symmetries. In Hermitian quantum systems, the real-valued Berry phase is known to be quantized in the presence of certain symmetries, and this quantized Berry phase can be regarded as a topological order parameter for gapped quantum systems. In this paper, on the other hand, we establish that the complex Berry phase is also quantized in the systems described by a family of non-Hermitian Hamiltonians. Let $H(theta)$ be a non-Hermitian Hamiltonian parameterized by $theta$. Suppose that there exists a unitary and Hermitian operator $P$ such that $PH(theta)P = H(-theta)$ or $PH(theta)P = H^dagger(-theta)$. We prove that in the former case, the complex Berry phase $gamma$ is $mathbb{Z}_2$-quantized, while in the latter, only the real part of $gamma$ is $mathbb{Z}_2$-quantized. The operator $P$ can be viewed as a generalized symmetry for $H(theta)$, and in practice, $P$ can be, for example, a spatial inversion. We also argue that this quantized complex Berry phase is capable of classifying non-Hermitian topological phases, and we demonstrate this in some one-dimensional strongly correlated systems.



قيم البحث

اقرأ أيضاً

We introduce the concepts of a symmetry-protected sign problem and symmetry-protected magic to study the complexity of symmetry-protected topological (SPT) phases of matter. In particular, we say a state has a symmetry-protected sign problem or symme try-protected magic, if finite-depth quantum circuits composed of symmetric gates are unable to transform the state into a non-negative real wave function or stabilizer state, respectively. We prove that states belonging to certain SPT phases have these properties, as a result of their anomalous symmetry action at a boundary. For example, we find that one-dimensional $mathbb{Z}_2 times mathbb{Z}_2$ SPT states (e.g. cluster state) have a symmetry-protected sign problem, and two-dimensional $mathbb{Z}_2$ SPT states (e.g. Levin-Gu state) have both a symmetry-protected sign problem and symmetry-protected magic. We also comment on the relation of a symmetry-protected sign problem to the computational wire property of one-dimensional SPT states and speculate about the greater implications of our results for measurement-based quantum computing.
100 - L. Jin , Z. Song 2021
Symmetry plays fundamental role in physics and the nature of symmetry changes in non-Hermitian physics. Here the symmetry-protected scattering in non-Hermitian linear systems is investigated by employing the discrete symmetries that classify the rand om matrices. The even-parity symmetries impose strict constraints on the scattering coefficients: the time-reversal (C and K) symmetries protect the symmetric transmission or reflection; the pseudo-Hermiticity (Q symmetry) or the inversion (P) symmetry protects the symmetric transmission and reflection. For the inversion-combined time-reversal symmetries, the symmetric features on the transmission and reflection interchange. The odd-parity symmetries including the particle-hole symmetry, chiral symmetry, and sublattice symmetry cannot ensure the scattering to be symmetric. These guiding principles are valid for both Hermitian and non-Hermitian linear systems. Our findings provide fundamental insights into symmetry and scattering ranging from condensed matter physics to quantum physics and optics.
121 - Ya-Jie Wu , Junpeng Hou 2019
Understanding how local potentials affect system eigenmodes is crucial for experimental studies of nontrivial bulk topology. Recent studies have discovered many exotic and highly non-trivial topological states in non-Hermitian systems. As such, it wo uld be interesting to see how non-Hermitian systems respond to local perturbations. In this work, we consider chiral and particle-hole -symmetric non-Hermitian systems on a bipartite lattice, including SSH model and photonic graphene, and find that a disordered local potential could induce bound states evolving from the bulk. When the local potential on a single site becomes infinite, which renders a lattice vacancy, chiral-symmetry-protected zero-energy mode and particle-hole symmetry-protected bound states with purely imaginary eigenvalues emerge near the vacancy. These modes are robust against any symmetry-preserved perturbations. Our work generalizes the symmetry-protected localized states to non-Hermitian systems.
We propose the $mathbb{Z}_Q$ Berry phase as a topological invariant for higher-order symmetry-protected topological (HOSPT) phases for two- and three-dimensional systems. It is topologically stable for electron-electron interactions assuming the gap remains open. As a concrete example, we show that the Berry phase is quantized in $mathbb{Z}_4$ and characterizes the HOSPT phase of the extended Benalcazar-Bernevig-Hughes (BBH) model, which contains the next-nearest neighbor hopping and the intersite Coulomb interactions. In addition, we introduce the $mathbb{Z}_4$ Berry phase for the spin-model-analog of the BBH model, whose topological invariant has not been found so far. Furthermore, we demonstrate the Berry phase is quantized in $mathbb{Z}_4$ for the three-dimensional version of the BBH model. We also confirm the bulk-corner correspondence between the $mathbb{Z}_4$ Berry phase and the corner states in the HOSPT phases.
We classify subsystem symmetry-protected topological (SSPT) phases in $3+1$D protected by planar subsystem symmetries, which are dual to abelian fracton topological orders. We distinguish between weak SSPTs, which can be constructed by stacking $2+1$ D SPTs, and strong SSPTs, which cannot. We identify signatures of strong phases, and show by explicit construction that such phases exist. A classification of strong phases is presented for an arbitrary finite abelian group. Finally, we show that fracton orders realizable via $p$-string condensation are dual to weak SSPTs, while strong SSPTs do not admit such a realization.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا