ﻻ يوجد ملخص باللغة العربية
Understanding how local potentials affect system eigenmodes is crucial for experimental studies of nontrivial bulk topology. Recent studies have discovered many exotic and highly non-trivial topological states in non-Hermitian systems. As such, it would be interesting to see how non-Hermitian systems respond to local perturbations. In this work, we consider chiral and particle-hole -symmetric non-Hermitian systems on a bipartite lattice, including SSH model and photonic graphene, and find that a disordered local potential could induce bound states evolving from the bulk. When the local potential on a single site becomes infinite, which renders a lattice vacancy, chiral-symmetry-protected zero-energy mode and particle-hole symmetry-protected bound states with purely imaginary eigenvalues emerge near the vacancy. These modes are robust against any symmetry-preserved perturbations. Our work generalizes the symmetry-protected localized states to non-Hermitian systems.
Quasiparticle states in Dirac systems with complex impurity potentials are investigated. It is shown that an impurity site with loss leads to a nontrivial distribution of the local density of states (LDOS). While the real part of defect potential ind
We study a one-dimensional $p$-wave superconductor subject to non-Hermitian quasiperiodic potentials. Although the existence of the non-Hermiticity, the Majorana zero mode is still robust against the disorder perturbation. The analytic topological ph
Symmetry plays fundamental role in physics and the nature of symmetry changes in non-Hermitian physics. Here the symmetry-protected scattering in non-Hermitian linear systems is investigated by employing the discrete symmetries that classify the rand
Using numerically exact methods we study transport in an interacting spin chain which for sufficiently strong spatially constant electric field is expected to experience Stark many-body localization. We show that starting from a generic initial state
We use low-depth quantum circuits, a specific type of tensor networks, to classify two-dimensional symmetry-protected topological many-body localized phases. For (anti-)unitary on-site symmetries we show that the (generalized) third cohomology class