ﻻ يوجد ملخص باللغة العربية
We propose all-optical neural networks characterized by very high energy efficiency and performance density of inference. We argue that the use of microcavity exciton-polaritons allows to take advantage of the properties of both photons and electrons in a seamless manner. This results in strong optical nonlinearity without the use of optoelectronic conversion. We propose a design of a realistic neural network and estimate energy cost to be at the level of attojoules per bit, also when including the optoelectronic conversion at the input and output of the network, several orders of magnitude below state-of-the-art hardware implementations. We propose two kinds of nonlinear binarized nodes based either on optical phase shifts and interferometry or on polariton spin rotations.
We present a simple method to create an in-plane lateral potential in a semiconductor microcavity using a metal thin-film. Two types of potential are produced: a circular aperture and a one-dimensional (1D) periodic grating pattern. The amplitude of
We present experimental observations of a non-resonant dynamic Stark shift in strongly coupled microcavity quantum well exciton-polaritons - a system which provides a rich variety of solid-state collective phenomena. The Stark effect is demonstrated
Due to high binding energy and oscillator strength, excitons in thin flakes of transition metal dichalcogenides constitute a perfect foundation for realizing a strongly coupled light-matter system. In this paper we investigate mono- and few-layer WSe
We detail the influence of a magnetic field on exciton-polaritons inside a semiconductor microcavity. Magnetic field can be used as a tuning parameter for exciton and photon resonances. We discuss the change of the exciton energy, the oscillator stre
We present a systematic investigation of two-photon excitation processes in a GaAs-based microcavity in the strong-coupling regime. We observe second harmonic generation resonant to the upper and lower polariton level, which exhibits a strong depende