ترغب بنشر مسار تعليمي؟ اضغط هنا

Deep Information Fusion for Electric Vehicle Charging Station Occupancy Forecasting

118   0   0.0 ( 0 )
 نشر من قبل Nicolas Tempelmeier
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

With an increasing number of electric vehicles, the accurate forecasting of charging station occupation is crucial to enable reliable vehicle charging. This paper introduces a novel Deep Fusion of Dynamic and Static Information model (DFDS) to effectively forecast the charging station occupation. We exploit static information, such as the mean occupation concerning the time of day, to learn the specific charging station patterns. We supplement such static data with dynamic information reflecting the preceding charging station occupation and temporal information such as daytime and weekday. Our model efficiently fuses dynamic and static information to facilitate accurate forecasting. We evaluate the proposed model on a real-world dataset containing 593 charging stations in Germany, covering August 2020 to December 2020. Our experiments demonstrate that DFDS outperforms the baselines by 3.45 percent points in F1-score on average.

قيم البحث

اقرأ أيضاً

We describe the architecture and algorithms of the Adaptive Charging Network (ACN), which was first deployed on the Caltech campus in early 2016 and is currently operating at over 100 other sites in the United States. The architecture enables real-ti me monitoring and control and supports electric vehicle (EV) charging at scale. The ACN adopts a flexible Adaptive Scheduling Algorithm based on convex optimization and model predictive control and allows for significant over-subscription of electrical infrastructure. We describe some of the practical challenges in real-world charging systems, including unbalanced three-phase infrastructure, non-ideal battery charging behavior, and quantized control signals. We demonstrate how the Adaptive Scheduling Algorithm handles these challenges, and compare its performance against baseline algorithms from the deadline scheduling literature using real workloads recorded from the Caltech ACN and accurate system models. We find that in these realistic settings, our scheduling algorithm can improve operator profit by 3.4 times over uncontrolled charging and consistently outperforms baseline algorithms when delivering energy in highly congested systems.
The number of electric vehicles (EVs) is expected to increase. As a consequence, more EVs will need charging, potentially causing not only congestion at charging stations, but also in the distribution grid. Our goal is to illustrate how this gives ri se to resource allocation and performance problems that are of interest to the Sigmetrics community.
Electric Vehicles (EVs) can help alleviate our reliance on fossil fuels for transport and electricity systems. However, charging millions of EV batteries requires management to prevent overloading the electricity grid and minimise costly upgrades tha t are ultimately paid for by consumers. Managed chargers, such as Vehicle-to-Grid (V2G) chargers, allow control over the time, speed and direction of charging. Such control assists in balancing electricity supply and demand across a green electricity system and could reduce costs for consumers. Smart and V2G chargers connect EVs to the power grid using a charging device which includes a data connection to exchange information and control commands between various entities in the EV ecosystem. This introduces data privacy concerns and is a potential target for cyber-security attacks. Therefore, the implementation of a secure system is crucial to permit both consumers and electricity system operators to trust smart charging and V2G. In principle, we already have the technology needed for a connected EV charging infrastructure to be securely enabled, borrowing best practices from the Internet and industrial control systems. We must properly adapt the security technology to take into account the challenges peculiar to the EV charging infrastructure. Challenges go beyond technical considerations and other issues arise such as balancing trade-offs between security and other desirable qualities such as interoperability, scalability, crypto-agility, affordability and energy efficiency. This document reviews security and privacy topics relevant to the EV charging ecosystem with a focus on smart charging and V2G.
58 - Weijia Zhang , Hao Liu , Fan Wang 2021
Electric Vehicle (EV) has become a preferable choice in the modern transportation system due to its environmental and energy sustainability. However, in many large cities, EV drivers often fail to find the proper spots for charging, because of the li mited charging infrastructures and the spatiotemporally unbalanced charging demands. Indeed, the recent emergence of deep reinforcement learning provides great potential to improve the charging experience from various aspects over a long-term horizon. In this paper, we propose a framework, named Multi-Agent Spatio-Temporal Reinforcement Learning (Master), for intelligently recommending public accessible charging stations by jointly considering various long-term spatiotemporal factors. Specifically, by regarding each charging station as an individual agent, we formulate this problem as a multi-objective multi-agent reinforcement learning task. We first develop a multi-agent actor-critic framework with the centralized attentive critic to coordinate the recommendation between geo-distributed agents. Moreover, to quantify the influence of future potential charging competition, we introduce a delayed access strategy to exploit the knowledge of future charging competition during training. After that, to effectively optimize multiple learning objectives, we extend the centralized attentive critic to multi-critics and develop a dynamic gradient re-weighting strategy to adaptively guide the optimization direction. Finally, extensive experiments on two real-world datasets demonstrate that Master achieves the best comprehensive performance compared with nine baseline approaches.
EVs (Electric Vehicles) represent a green alternative to traditional fuel-powered vehicles. To enforce their widespread use, both the technical development and the security of users shall be guaranteed. Privacy of users represents one of the possible threats impairing EVs adoption. In particular, recent works showed the feasibility of identifying EVs based on the current exchanged during the charging phase. In fact, while the resource negotiation phase runs over secure communication protocols, the signal exchanged during the actual charging contains features peculiar to each EV. A suitable feature extractor can hence associate such features to each EV, in what is commonly known as profiling. In this paper, we propose EVScout2.0, an extended and improved version of our previously proposed framework to profile EVs based on their charging behavior. By exploiting the current and pilot signals exchanged during the charging phase, our scheme is able to extract features peculiar for each EV, allowing hence for their profiling. We implemented and tested EVScout2.0 over a set of real-world measurements considering over 7500 charging sessions from a total of 137 EVs. In particular, numerical results show the superiority of EVScout2.0 with respect to the previous version. EVScout2.0 can profile EVs, attaining a maximum of 0.88 recall and 0.88 precision. To the best of the authors knowledge, these results set a new benchmark for upcoming privacy research for large datasets of EVs.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا