ﻻ يوجد ملخص باللغة العربية
Existing machines are functionally specific tools that were made for easy prediction and control. Tomorrows machines may be closer to biological systems in their mutability, resilience, and autonomy. But first they must be capable of learning, and retaining, new information without repeated exposure to it. Past efforts to engineer such systems have sought to build or regulate artificial neural networks using task-specific modules with constrained circumstances of application. This has not yet enabled continual learning over long sequences of previously unseen data without corrupting existing knowledge: a problem known as catastrophic forgetting. In this paper, we introduce a system that can learn sequentially over previously unseen datasets (ImageNet, CIFAR-100) with little forgetting over time. This is accomplished by regulating the activity of weights in a convolutional neural network on the basis of inputs using top-down modulation generated by a second feed-forward neural network. We find that our method learns continually under domain transfer with sparse bursts of activity in weights that are recycled across tasks, rather than by maintaining task-specific modules. Sparse synaptic bursting is found to balance enhanced and diminished activity in a way that facilitates adaptation to new inputs without corrupting previously acquired functions. This behavior emerges during a prior meta-learning phase in which regulated synapses are selectively disinhibited, or grown, from an initial state of uniform suppression.
While deep learning has led to remarkable advances across diverse applications, it struggles in domains where the data distribution changes over the course of learning. In stark contrast, biological neural networks continually adapt to changing domai
Continual learning aims to improve the ability of modern learning systems to deal with non-stationary distributions, typically by attempting to learn a series of tasks sequentially. Prior art in the field has largely considered supervised or reinforc
Deep neural networks (DNNs) are known to perform well when deployed to test distributions that shares high similarity with the training distribution. Feeding DNNs with new data sequentially that were unseen in the training distribution has two major
Deep neural networks have shown promise in several domains, and the learned data (task) specific information is implicitly stored in the network parameters. Extraction and utilization of encoded knowledge representations are vital when data is no lon
A continual learning agent learns online with a non-stationary and never-ending stream of data. The key to such learning process is to overcome the catastrophic forgetting of previously seen data, which is a well known problem of neural networks. To