ﻻ يوجد ملخص باللغة العربية
With the deep integration between the unmanned aerial vehicle (UAV) and wireless communication, UAV-based air-to-ground (AG) propagation channels need more detailed descriptions and accurate models. In this paper, we aim to perform cluster-based characterization and modeling for AG channels. To our best knowledge, this is the first study that concentrates on the clustering and tracking of multipath components (MPCs) for time-varying AG channels. Based on measurement data at 6.5 GHz with 500 MHz of bandwidth, we first estimate potential MPCs utilizing the space-alternating generalized expectation-maximization (SAGE) algorithm. Then, we cluster the extracted MPCs considering their static and dynamic characteristics by employing K-Power-Means (KPM) algorithm under multipath component distance (MCD) measure. For characterizing time-variant clusters, we exploit a clustering-based tracking (CBT) method, which efficiently quantifies the survival lengths of clusters. Ultimately, we establish a cluster-based channel model, and validations illustrate the accuracy of the proposed model. This work not only promotes a better understanding of AG propagation channels but also provides a general cluster-based AG channel model with certain extensibility.
To provide high data rate aerial links for 5G and beyond wireless networks, the integration of free-space optical (FSO) communications and aerial platforms has been recently suggested as a practical solution. To fully reap the benefit of aerial-based
Due to the decrease in cost, size and weight, acp{UAV} are becoming more and more popular for general-purpose civil and commercial applications. Provision of communication services to acp{UAV} both for user data and control messaging by using off-the
Cellular-connected unmanned aerial vehicles (UAVs) have recently attracted a surge of interest in both academia and industry. Understanding the air-to-ground (A2G) propagation channels is essential to enable reliable and/or high-throughput communicat
Millimeter-wave rotary-wing (RW) unmanned aerial vehicle (UAV) air-to-ground (A2G) links face unpredictable Doppler effect arising from the inevitable wobbling of RW UAV. Moreover, the time-varying channel characteristics during transmission lead to
We propose a learning-based scheme to investigate the dynamic multi-channel access (DMCA) problem in the fifth generation (5G) and beyond networks with fast time-varying channels wherein the channel parameters are unknown. The proposed learning-based