ﻻ يوجد ملخص باللغة العربية
To provide high data rate aerial links for 5G and beyond wireless networks, the integration of free-space optical (FSO) communications and aerial platforms has been recently suggested as a practical solution. To fully reap the benefit of aerial-based FSO systems, in this paper, an analytical channel model for a long-range ground-to-air FSO link under the assumption of plane wave optical beam profile at the receiver is derived. Particularly, the model includes the combined effects of transmitter divergence angle, random wobbling of the receiver, jitter due to beam wander, attenuation loss, and atmospheric turbulence. Furthermore, a closed-form expression for the outage probability of the considered link is derived which makes it possible to evaluate the performance of such systems. Numerical results are then provided to corroborate the accuracy of the proposed analytical expressions and to prove the superiority of the proposed channel model over the previous models in long-range aerial FSO links.
Due to the decrease in cost, size and weight, acp{UAV} are becoming more and more popular for general-purpose civil and commercial applications. Provision of communication services to acp{UAV} both for user data and control messaging by using off-the
Cellular-connected unmanned aerial vehicles (UAVs) have recently attracted a surge of interest in both academia and industry. Understanding the air-to-ground (A2G) propagation channels is essential to enable reliable and/or high-throughput communicat
With the deep integration between the unmanned aerial vehicle (UAV) and wireless communication, UAV-based air-to-ground (AG) propagation channels need more detailed descriptions and accurate models. In this paper, we aim to perform cluster-based char
In this paper, a recently conducted measurement campaign for unmanned-aerial-vehicle (UAV) channels is introduced. The downlink signals of an in-service long-time-evolution (LTE) network which is deployed in a suburban scenario were acquired. Five ho
Unmanned Aerial Vehicles (UAVs), popularly called drones, are an important part of future wireless communications, either as user equipment that needs communication with a ground station, or as base station in a 3D network. For both the analysis of t