ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimal L2 -approximation of occupation and local times for symmetric stable processes

76   0   0.0 ( 0 )
 نشر من قبل Ronan Le Guevel
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The L2-approximation of occupation and local times of a symmetric $alpha$-stable L{e}vy process from high frequency discrete time observations is studied. The standard Riemann sum estimators are shown to be asymptotically efficient when 0 < $alpha$ $le$ 1, but only rate optimal for 1 < $alpha$ $le$ 2. For this, the exact convergence of the L2-approximation error is proven with explicit constants.

قيم البحث

اقرأ أيضاً

92 - Bo Li , Chunhao Cai 2016
In this paper, we derive the joint Laplace transforms of occupation times until its last passage times as well as its positions. Motivated by Baurdoux [2], the last times before an independent exponential variable are studied. By applying dual argume nts, explicit formulas are derived in terms of new analytical identities from Loeffen et al. [12].
64 - Alexey M. Kulik 2007
We consider sequences of additive functionals of difference approximations for uniformly non-degenerate multidimensional diffusions. The conditions are given, sufficient for such a sequence to converge weakly to a W-functional of the limiting process . The class of the W-functionals, that can be obtained as the limiting ones, is completely described in the terms of the associated W-measures, and coincides with the class of the functionals that are regular w.r.t. the phase variable.
In this paper we prove exact forms of large deviations for local times and intersection local times of fractional Brownian motions and Riemann-Liouville processes. We also show that a fractional Brownian motion and the related Riemann-Liouville proce ss behave like constant multiples of each other with regard to large deviations for their local and intersection local times. As a consequence of our large deviation estimates, we derive laws of iterated logarithm for the corresponding local times. The key points of our methods: (1) logarithmic superadditivity of a normalized sequence of moments of exponentially randomized local time of a fractional Brownian motion; (2) logarithmic subadditivity of a normalized sequence of moments of exponentially randomized intersection local time of Riemann-Liouville processes; (3) comparison of local and intersection local times based on embedding of a part of a fractional Brownian motion into the reproducing kernel Hilbert space of the Riemann-Liouville process.
82 - Samuel Herrmann 2019
In order to approximate the exit time of a one-dimensional diffusion process, we propose an algorithm based on a random walk. Such an algorithm was already introduced in both the Brownian context and in the Ornstein-Uhlenbeck context. Here the aim is therefore to generalize this efficient numerical approach in order to obtain an approximation of both the exit time and position for either a general linear diffusion or a growth diffusion. The efficiency of the method is described with particular care through theoretical results and numerical examples.
112 - Randolf Altmeyer 2017
The strong $L^2$-approximation of occupation time functionals is studied with respect to discrete observations of a $d$-dimensional c`adl`ag process. Upper bounds on the error are obtained under weak assumptions, generalizing previous results in the literature considerably. The approach relies on regularity for the marginals of the process and applies also to non-Markovian processes, such as fractional Brownian motion. The results are used to approximate occupation times and local times. For Brownian motion, the upper bounds are shown to be sharp up to a log-factor.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا