ﻻ يوجد ملخص باللغة العربية
The L2-approximation of occupation and local times of a symmetric $alpha$-stable L{e}vy process from high frequency discrete time observations is studied. The standard Riemann sum estimators are shown to be asymptotically efficient when 0 < $alpha$ $le$ 1, but only rate optimal for 1 < $alpha$ $le$ 2. For this, the exact convergence of the L2-approximation error is proven with explicit constants.
In this paper, we derive the joint Laplace transforms of occupation times until its last passage times as well as its positions. Motivated by Baurdoux [2], the last times before an independent exponential variable are studied. By applying dual argume
We consider sequences of additive functionals of difference approximations for uniformly non-degenerate multidimensional diffusions. The conditions are given, sufficient for such a sequence to converge weakly to a W-functional of the limiting process
In this paper we prove exact forms of large deviations for local times and intersection local times of fractional Brownian motions and Riemann-Liouville processes. We also show that a fractional Brownian motion and the related Riemann-Liouville proce
In order to approximate the exit time of a one-dimensional diffusion process, we propose an algorithm based on a random walk. Such an algorithm was already introduced in both the Brownian context and in the Ornstein-Uhlenbeck context. Here the aim is
The strong $L^2$-approximation of occupation time functionals is studied with respect to discrete observations of a $d$-dimensional c`adl`ag process. Upper bounds on the error are obtained under weak assumptions, generalizing previous results in the