ﻻ يوجد ملخص باللغة العربية
Recent experiments have observed correlated insulating and possible superconducting phases in twisted homobilayer transition metal dichalcogenides (TMDs). Besides the spin-valley locked moire bands due to the intrinsic Ising spin-orbit coupling, homobilayer moire TMDs also possess either logarithmic or power-law divergent Van Hove singularities (VHS) near the Fermi surface, controllable by an external displacement field. The former and the latter are dubbed conventional and higher-order VHS, respectively. Here, we perform a perturbative renormalization group (RG) analysis to unbiasedly study the dominant instabilities in homobilayer TMDs for both the conventional and higher-order VHS cases. We find that the spin-valley locking largely alters the RG flows and leads to instabilities unexpected in the corresponding extensively-studied graphene-based moire systems, such as spin- and valley-polarized ferromagnetism and topological superconductivity with mixed parity. In particular, for the case with two higher-order VHS, we find a spin-valley-locking-driven metallic state with no symmetry breaking in the TMDs despite the diverging bare susceptibility. Our results show how the spin-valley locking significantly affects the RG analysis and demonstrate that moire TMDs are suitable platforms to realize various interaction-induced spin-valley locked phases, highlighting physics fundamentally different from the well-studied graphene-based moire systems.
The quasistatic approach is used to analyze the criterion of ferromagnetism for two-dimensional (2D) systems with the Fermi level near Van Hove (VH) singularities of the electron spectrum. It is shown that the spectrum of spin excitations (paramagnon
Van Hove points are special points in the energy dispersion, where the density of states exhibits analytic singularities. When a Van Hove point is close to the Fermi level, tendencies towards density wave orders, Pomeranchuk orders, and superconducti
Van Hove singularity are electronic instabilities that lead to many fascinating interactions, such as superconductivity and charge-density waves. And despite much interest, the nexus of emergent correlation effects from van Hove singularities and top
Two-dimensional (2D) Van Hove singularities (VHSs) associated with the saddle points or extrema of the energy dispersion usually show logarithmic divergences in the density of states (DOS). However, recent studies find that the VHSs originating from
Recent experiments have observed possible spin- and valley-polarized insulators and spin-triplet superconductivity in twisted double bilayer graphene, a moire structure consisting of a pair of Bernal-stacked bilayer graphene. Besides the continuously