ﻻ يوجد ملخص باللغة العربية
In this work I will discuss some numerical results on the stability of the many-body localized phase to thermal inclusions. The work simplifies a recent proposal by Morningstar et al. [arXiv:2107.05642] and studies small disordered spin chains which are perturbatively coupled to a Markovian bath. The critical disorder for avalanche stability of the canonical disordered Heisenberg chain is shown to exceed W>20. In stark contrast to the Anderson insulator, the avalanche threshold drifts considerably with system size, with no evidence of saturation in the studied regime. I will argue that the results are most easily explained by the absence of a many-body localized phase.
We numerically study both the avalanche instability and many-body resonances in strongly-disordered spin chains exhibiting many-body localization (MBL). We distinguish between a finite-size/time MBL regime, and the asymptotic MBL phase, and identify
We study the time evolution of quantum entanglement for a specific class of quantum dynamics, namely the locally scrambled quantum dynamics, where each step of the unitary evolution is drawn from a random ensemble that is invariant under local (on-si
Recently, we showed that optimization problems, both in infinite as well as in finite dimensions, for continuous variables and soft excluded volume constraints, can display entire isostatic phases where local minima of the cost function are marginall
This work brings together Keldysh non-equilibrium quantum theory and thermodynamics, by showing that a real-time diagrammatic technique is an equivalent of stochastic thermodynamics for non-Markovian quantum machines (heat engines, refrigerators, etc
Monitored quantum circuits can exhibit an entanglement transition as a function of the rate of measurements, stemming from the competition between scrambling unitary dynamics and disentangling projective measurements. We study how entanglement dynami