ﻻ يوجد ملخص باللغة العربية
We study the time evolution of quantum entanglement for a specific class of quantum dynamics, namely the locally scrambled quantum dynamics, where each step of the unitary evolution is drawn from a random ensemble that is invariant under local (on-site) basis transformations. In this case, the average entanglement entropy follows Markovian dynamics that the entanglement property of the future state can be predicted solely based on the entanglement properties of the current state and the unitary operator at each step. We introduce the entanglement feature formulation to concisely organize the entanglement entropies over all subsystems into a many-body wave function, which allows us to describe the entanglement dynamics using an imaginary-time Schrodinger equation, such that various tools developed in quantum many-body physics can be applied. The framework enables us to investigate a variety of random quantum dynamics beyond Haar random circuits and Brownian circuits. We perform numerical simulations for these models and demonstrate the validity and prediction power of the entanglement feature approach.
We characterize the early stages of the approach to equilibrium in isolated quantum systems through the evolution of the entanglement spectrum. We find that the entanglement spectrum of a subsystem evolves with at least three distinct timescales. Fir
Spin glasses and many-body localization (MBL) are prime examples of ergodicity breaking, yet their physical origin is quite different: the former phase arises due to rugged classical energy landscape, while the latter is a quantum-interference effect
We generalize the classical shadow tomography scheme to a broad class of finite-depth or finite-time local unitary ensembles, known as locally scrambled quantum dynamics, where the unitary ensemble is invariant under local basis transformations. In t
We theoretically study the response of a many-body localized system to a local quench from a quantum information perspective. We find that the local quench triggers entanglement growth throughout the whole system, giving rise to a logarithmic lightco
The entanglement spectrum of the reduced density matrix contains information beyond the von Neumann entropy and provides unique insights into exotic orders or critical behavior of quantum systems. Here, we show that strongly disordered systems in the