ﻻ يوجد ملخص باللغة العربية
Recovering high-quality 3D human motion in complex scenes from monocular videos is important for many applications, ranging from AR/VR to robotics. However, capturing realistic human-scene interactions, while dealing with occlusions and partial views, is challenging; current approaches are still far from achieving compelling results. We address this problem by proposing LEMO: LEarning human MOtion priors for 4D human body capture. By leveraging the large-scale motion capture dataset AMASS, we introduce a novel motion smoothness prior, which strongly reduces the jitters exhibited by poses recovered over a sequence. Furthermore, to handle contacts and occlusions occurring frequently in body-scene interactions, we design a contact friction term and a contact-aware motion infiller obtained via per-instance self-supervised training. To prove the effectiveness of the proposed motion priors, we combine them into a novel pipeline for 4D human body capture in 3D scenes. With our pipeline, we demonstrate high-quality 4D human body capture, reconstructing smooth motions and physically plausible body-scene interactions. The code and data are available at https://sanweiliti.github.io/LEMO/LEMO.html.
To understand human daily social interaction from egocentric perspective, we introduce a novel task of reconstructing a time series of second-person 3D human body meshes from monocular egocentric videos. The unique viewpoint and rapid embodied camera
Synthesizing 3D human motion plays an important role in many graphics applications as well as understanding human activity. While many efforts have been made on generating realistic and natural human motion, most approaches neglect the importance of
We present a new trainable system for physically plausible markerless 3D human motion capture, which achieves state-of-the-art results in a broad range of challenging scenarios. Unlike most neural methods for human motion capture, our approach, which
In this paper, we propose a pose grammar to tackle the problem of 3D human pose estimation. Our model directly takes 2D pose as input and learns a generalized 2D-3D mapping function. The proposed model consists of a base network which efficiently cap
Markerless motion capture and understanding of professional non-daily human movements is an important yet unsolved task, which suffers from complex motion patterns and severe self-occlusion, especially for the monocular setting. In this paper, we pro