ﻻ يوجد ملخص باللغة العربية
We study interacting critical UV regime of the long-range $O(N)$ vector model with quartic coupling. Analyzing CFT data within the scope of $epsilon$- and $1/N$-expansion, we collect evidence for the equivalence of this model and the critical IR limit of the cubic model coupled to a generalized free field $O(N)$ vector multiplet.
We use the background field method to systematically derive CFT data for the critical $phi^6$ vector model in three dimensions, and the Gross-Neveu model in dimensions $2leq d leq 4$. Specifically, we calculate the OPE coefficients and anomalous dime
We study the extent to which knot and link states (that is, states in 3d Chern-Simons theory prepared by path integration on knot and link complements) can or cannot be described by stabilizer states. States which are not classical mixtures of stabil
We study finite $N$ aspects of the $O(m)times O(N-m)$ vector model with quartic interactions in general $2leq d leq 6$ spacetime dimensions. This model has recently been shown to display the phenomenon of persistent symmetry breaking at a perturbativ
We show how, upon heating the spin degrees of freedom of the Hubbard model to infinite temperature, the symmetries of the system allow the creation of steady-states with long-range correlations between $eta$-pairs. With induce this heating with eithe
In the previous paper, we studied the random-mass Dirac fermion in one dimension by using the transfer-matrix methods and by introducing an imaginary vector potential in order to calculate the localization lengths. Especially we considered effects of