ﻻ يوجد ملخص باللغة العربية
We study finite $N$ aspects of the $O(m)times O(N-m)$ vector model with quartic interactions in general $2leq d leq 6$ spacetime dimensions. This model has recently been shown to display the phenomenon of persistent symmetry breaking at a perturbative Wilson-Fisher-like fixed point in $d=4-epsilon$ dimensions. The large rank limit of the bi-conical model displays a conformal manifold and a moduli space of vacua. We find a set of three double trace scalar operators that are respectively irrelevant, relevant and marginal deformations of the conformal manifold in general $d$. We calculate the anomalous dimensions of the single and multi-trace scalar operators to the first sub-leading order in the large rank expansion. The anomalous dimension of the marginal operator does not vanish in general, indicating that the conformal manifold is lifted at finite $N$. In the case of equal ranks we are able to derive explicitly the scaling dimensions of various operators as functions of only $d$.
We compute the $O(1/N^3)$ correction to the critical exponent $eta$ in the chiral XY or chiral Gross-Neveu model in $d$-dimensions. As the leading order vertex anomalous dimension vanishes, the direct application of the large $N$ conformal bootstrap
The SYK model has a wormhole-like solution after averaging over the fermionic coupling in the nearly $AdS_2$ space. Even when the couplings are fixed the contribution of these wormholes continues to exist and new saddle points appear which are interp
We continue the study of the Sachdev-Ye-Kitaev model in the Large $N$ limit. Following our formulation in terms of bi-local collective fields with dynamical reparametrization symmetry, we perform perturbative calculations around the conformal IR point.
We show analytically that the spectral density of the $q$-body Sachdeev-Ye-Kitaev (SYK) model agrees with that of Q-Hermite polynomials with Q a non-trivial function of $q ge 2$ and the number of Majorana fermions $N gg 1$. Numerical results, obtaine
The nature of the deconfining phase transition in the 2+1-dimensional SU(N) Georgi-Glashow model is investigated. Within the dimensional-reduction hypothesis, the properties of the transition are described by a two-dimensional vectorial Coulomb gas m